期刊文献+

一类具扩散两种群互惠模型的周期解

Periodic solution to a system describing two species cooperating model with diffusion
下载PDF
导出
摘要 研究一类两种群互惠模型,考虑具齐次Neumann边界条件周期反应扩散方程组的T-周期解,通过上下解方法给出其T-周期解存在的充分条件,并利用MAPLE 9.0软件得到相应的数值模拟. This paper deals with a system describing two species cooperative model. The periodic solution to a reaction-diffusion system with periodic coefficients is considered. The sufficient condi tions to the existence of T-periodic solution are given by using upper and lower solution method, and the corresponding numerical simulation with MAPLE 9.0 is also obtained.
出处 《扬州大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第1期17-20,共4页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(10671172)
关键词 互惠模型 时滞 反应扩散方程 T-周期解 cooperating model time delay reaction-diffusion system T-periodic solution
  • 相关文献

参考文献10

  • 1LI Yong-kun. On a periodic mutualism model [J]. ANZIAM J, 2001, 42(4): 569-580.
  • 2刘加红,张进,姚碧霖.一类具有Hlling-Ⅱ型功能性响应函数的捕食模型[J].扬州大学学报(自然科学版),2007,10(4):26-30. 被引量:1
  • 3凌智,田灿荣.一类热传导自由边界问题的数值解法[J].扬州大学学报(自然科学版),2008,11(4):12-15. 被引量:5
  • 4HESS P. Periodic parabolic boundary value problems and positivity [M]//Pitman Research Notes in Mathematics. New York: Longman Scientific and Technical, 1991: 132-139.
  • 5GAN Wen-zhen, 1.IN Zhi-gui. Coexistence and asymptotic periodicity in a competitor-competitor-mutualist model[J]. J Math Anal Appl, 2008, 337(2): 1089-1099.
  • 6ZHAO Xiao qiang. Global asymptotic behavior in a periodic competitor-competitor-mutualist parabolic system [J].Nonlinear Anal, 1997, 29(5): 551-568.
  • 7PAO C V. Stability and attractivity of periodic solutions of parabolic systems with time delays [J]. J Math Anal Appl, 2005, 304(2): 423-450.
  • 8谢强军,张光新,周泽魁.一类周期反应扩散方程正周期解的存在性[J].数学物理学报(A辑),2009,29(2):465-474. 被引量:2
  • 9黄运金,孔宪荣,王培林.捕食模型正周期解存在性的一个注记[J].数学研究,2009,42(1):63-67. 被引量:1
  • 10TIAN Can-rong, LIN Zhi-gui. Periodic solutions of reaction diffusion systems in a half-space domain [J].Nonlinear Anal: Real World Appl, 2008, 9(3): 811-821.

二级参考文献33

  • 1ChenBin,PengRui.COEXISTENCE STATES OF A STRONGLY COUPLED PREY-PREDATOR MODEL[J].Journal of Partial Differential Equations,2005,18(2):154-166. 被引量:3
  • 2刘佳,周桦.带扩散的具性别结构的捕食模型分析[J].扬州大学学报(自然科学版),2006,9(4):12-16. 被引量:1
  • 3CRANK J. Free and moving boundary problems [M]. Oxford: Clarendon Press, 198,1: 1-23.
  • 4OCKENDON J R, HODGKINS W R. Moving boundary problems in heat flow anti diffusion [M]. Oxford: Clarendon Press, 1975: 1-20.
  • 5FRIEDMAN A, HU B. Asymptotic stability for a free boundary problem arising in a tumor model [J]. J Differ Eels, 2006, 227(2): 598-639.
  • 6TAO You-shan, CHEN Miao-jun. An elliptic-hyperbolic free boundary problem modelling cancer therapy [J].Nonlinearity, 2006, 19(2): 419-410.
  • 7AMADORI A L, VAZQUEZ J L. Singular free boundary prohlem from image processing[J]. Math Models Methods Appl Sci, 2005, 15(5): 689-715.
  • 8LIN Zhi-gui. A free boundary problem for a predator-prey model [J].Nonlinearity, 2007, 20(8): 1883-1892.
  • 9AZIZ A, NA T Y. Perturbation methods in heat transfer [M]. Washington: Hemisphere, 198,1: 21-49.
  • 10SPALL R.Spectral collocation methods for one dimensional phase change problems[J].Hear Mass Transfer. 38(15): 2713-2718.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部