期刊文献+

基于本质矩阵的摄像机自标定方法 被引量:16

An Essential Matrix-based Camera Self-Calibration Method
下载PDF
导出
摘要 本质矩阵描述了在摄像机内参数矩阵已知的条件下的对极几何关系,是归一化图像坐标下的基础矩阵。鉴于本质矩阵具有两相等的非零奇异值,提出了一种基于本质矩阵的自标定方法,该方法首先利用本质矩阵这个特性来构造目标函数,考虑到传统非线性优化算法的诸多不足,最后用粒子群优化算法来求解。实验结果表明,该方法精度较高、鲁棒性较强,是一种简单而有效的自标定方法。 The essential matrix, which is a fundamental matrix described in the normalized image coordinate, represents the epipolar geometry relation under the condition of known camera intrinsic parameters. It is well known, two non-zero singular values of the essential matrix must be equal. Therefore, according to the intrinsic property, an essential matrixbased self-calibration approach is for proposed the first time in this paper. First, the objective function is constructed by the intrinsic property of the essential matrix. Second, the particle swarm optimization is used to solve the objective function considering the drawbacks of traditional optimization algorithms. Analytical results show that the proposed method is not only highly accurate but also robust. Consequently, it is a simple but valid self-calibration method.
出处 《中国图象图形学报》 CSCD 北大核心 2010年第4期565-569,共5页 Journal of Image and Graphics
基金 国家自然科学基金项目(60673055 60973096) 国家航空基金项目(2007zc56003) 江西省自然科学基金项目(2008GZS0033)
关键词 摄像机自标定 本质矩阵 基础矩阵 粒子群算法 intrinsic parameters, essential matrix, fundamental matrix, PSO
  • 相关文献

参考文献13

  • 1Fusiello A. Uncalibrated Euclidean reconstruction: A review[ J]. Image and Vision Computing, 2000, 18(6-7) :555-563.
  • 2Maybank S J, Faugeras O D. A theory of self-calibration of a moving camera [ J]. International Journal of Computer Vision, 1992, 8(2): 123-151.
  • 3Hartley R. Estimation of relative camera position for uncalibrated cameras[ C ]//Proceedings of the 2nd European Conference on Computer Vision. London, UK: Springer-Verlag, 1992:579-587.
  • 4Mendonca P, Cipolla R. A simple technique for self-calibration [ C]. In the Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE Press, 1999:112-116.
  • 5Kennedy J, Eberhart R. Particle swarm optimization [ C ]// Proceedings of the IEEE International Conference on Neural Networks. Piscataway, N J, USA: IEEE Press, 1995: 1942-1948.
  • 6Kennedy J, Eberhart R. A new optimizer using particle swarm theory[ C ]//Proceedinds of the 6th International Symposium on Micro Machine and Human Science. Piscataway, NJ, USA: IEEE Press, 1995 : 39- 43.
  • 7Shi Y, Eberhart R. A modified particle swarm optimizer [ C ]// Proceedings of the IEEE International Conference on Evolutionary Computation. Piscataway,NJ,USA:IEEE Press,1998:69-73.
  • 8Hartley R. In defence of the eight-point algothm [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(6):580-593.
  • 9Lourakis L, Deriche R. Camera Self-Calibration Using the svd of the Fundamental Matrix: Technical Report 3748 [ R ] . Sophia Antipolis, France: The France National Institute for Research in Computer Science and Control, 1999.
  • 10Zeller C, Faugeras O D. Camera Self-Calibration from Video Sequences: the Kruppa Equations Revisited: Research Report 2793 [ R]. Sophia Antipolis, France: The France National Institute for Research in Computer Science and Control, 1996.

同被引文献166

引证文献16

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部