期刊文献+

应用扩张矩阵理论的攻击特征提取 被引量:3

Attack Feature Extraction Using Extension Matrix Theory
下载PDF
导出
摘要 近年来随着因特网的飞速发展,计算机系统也面临着越来越多的安全威胁。国内外不少研究人员为此提出了许多种基于软计算的方法用于检测网络攻击。给出了一种基于扩张矩阵理论的攻击特征提取方法,通过构造攻击子集和正常子集的扩张矩阵,建立其最优特征子集选择的整数规划模型,并利用简单遗传算法求解,最终生成可用于检测特定类型攻击的最优规则。在KDD Cup99数据集上的实验结果表明,该方法具有较高的正确检出率和可接受的低误报率。 With the rapid development of Internet in recent years, computer systems are facing increased number of security threats. Various soft computing based approaches have been proposed to detect computer network attacks. A method for attack feature extraction based on extension matrix theory was given in this paper. By constructing extension matrix on positive and negative examples, the integer programming model for its optimal feature subset selection was built, which will be solved by simple genetic algorithm. Finally optimal rules for detection of specific attack were generated. Experimental results show the achievement of high correct detection rates and acceptable low false positive rates based on benchmark KDD Cup99 data sets.
作者 陈志贤 黄皓
出处 《计算机科学》 CSCD 北大核心 2010年第4期49-51,74,共4页 Computer Science
基金 国家八六三高技术研究发展计划(2007AA01Z409) 国家自然科学基金项目(60673185)资助
关键词 扩张矩阵 特征子集选择 遗传算法 入侵检测 Extension matrix, Feature subset selection, Genetic algorithm, Intrusion detection
  • 相关文献

参考文献11

  • 1Gong R,Zulkernine M,Abolmaesumi P.A Software Implementation of a Genetic Algorithm Based Approach to Network Intrusion Detection[C]//Proc. of Sixth ACIS International Conference on Software Engineering,Artificial Intelligence,Networking,and Parallel/Distributed Computing.Maryland; IEEE Press,2005:246-253.
  • 2El-Semary A,Edmonds J,Gonzalez-Pino J,et al.Applying Data Mining of Fuzzy Association Rules to Network Intrusion Detection[C]//Proc.of Information Assurance Workshop.West Point,NY:IEEE Press,2006.100-107.
  • 3Moradi M,Zulkernine M.A Neural Network Based System for Intrusion Detection and Classification of Attacks[C]//Proc.of the 2004 IEEE International Conference on Advances in Intelligent Systems-Theory and Applications.Luxembourg:IEEE Press,2004.
  • 4Mukkamala S,Sung A,Abraham A.Modeling intrusion detection systems using linear genetic programming approach[C]//Proc.of the 17th international conference on Innovations in applied artificial intelligence.New York:Springer-Verlag,2004:633-642.
  • 5Dasgupta D,Gonzalez F.An Intelligent Decision Support System for Intrusion Detection and Response[C]//Proc.of the International Workshop on Information Assurance in Computer Networks:Methods,Models,and Architectures for Network Security.New York;Springer-Verlag,2001:1-14.
  • 6Helmer G,Wong J,Honavar V,et al.Automated discovery of concise predictive rules for intrusion detection[J].The Journal of Systems and Software,2002,60(3):165-175.
  • 7Hong J R.AE1:An extension matrix approximate method for the general covering problem[J].International Journal of Computer and Information Science,1985,14(6):421-437.
  • 8洪家荣.示例式学习及多功能学习系统AE5[J].计算机学报,1989,12(2):98-105. 被引量:19
  • 9李敏强,寇纪淞,戴林.示例学习与特征选择的规划模型方法[J].系统工程学报,2000,15(2):163-167. 被引量:3
  • 10MIT Lincoln Laboratory.1999 DARPA Intrusion Detection E-valuation Data Set[EB/OL].[2009-3-23].http://www.ll.mit edu/mission/communications/ist/corpora/ideval/data/1999d-ata.html.

二级参考文献6

共引文献20

同被引文献19

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部