期刊文献+

一种基于个体经验的多粒度信任模型 被引量:2

Multi-granularity Trust Model Based on Individual Expericence
下载PDF
导出
摘要 分布式网络中,对于某一节点所提供的相同质量的服务,不同的访问节点对该节点的信任评价存在差异。导致这种差异的原因,一方面与访问节点的直接交互经验有关,另一方面与访问节点的兴趣爱好及对服务评价的理解角度有关(有的节点对服务的评价看重的是下载速度,而有的节点则更看重服务的安全可靠等),这种差异必然影响信任评价的准确性。为了消除个体节点信任评价差异所产生的影响,通过引入经验因子的方法和采用多元组的信任信息记录方法,提出了一种基于个体经验的多粒度信任模型。实验分析表明,该模型在信任评价的粒度、信任评价的准确性等方面有较大的提高。 In distributed networks, the trust evaluation for the same quality services of one node conducted by different access nodes is different. On the one side,it has relation to the direct mutual experience of the accessing node. And on the other side, it has relation to the accessing node's interest and opinion about the service evaluation. Some nodes think a lot of the download speed, while some other nodes put more emphasis on the security and reliability of the service, which cannot but lead to influence the veracity of trust evaluation. In order to eliminate the infection resulted from the trust evaluation difference of individual nodes, a multi-granularity trust model based on individual experience was put forward. In this model, experience factor and multi trust information recording methods were employed. Experiment and analysis show that the proposed model has better improvement in granularity and veracity of trust evaluation.
出处 《计算机科学》 CSCD 北大核心 2010年第4期91-94,105,共5页 Computer Science
基金 国家"八六三"高技术研究发展计划项目基金(No.2007AA012474) 国家发改委信息安全专项基金(No.[2008]1736)资助
关键词 信任模型 非对称性 相对经验因子 反馈可信度 Trust model, Asymmetry,Relative experience factor, Feedback trust value
  • 相关文献

参考文献21

  • 1Beth T,Borcherding M,Klein B.Valuation of trust in open network[C]//Gollmann D,ed.Proc.of the European Symp.on Research in Security (ESORICS).Brighton,Springer-Verlag,1994,3-18.
  • 2Beth T,Borcherding M,Klein B.Valuation of trust in open networks[C]//Proceedings of the European Symposium on Research in security.Brighton:Springer-Verglag,1999:59-63.
  • 3Dempster A P.Upper andLower Probability Induced by a Multi-valued Mapping[J].Annals Mathematical Statistics,1967,38(2):325-339.
  • 4Shafer G.A Mathematical Theory of Evidence.Princeton[M],Princeton University,1976.
  • 5Mui L,Mohtashemi M,Halberstadt M.A computational model of trust an reputation[C]//Proceedings of the 35th Hawaii International Conference on System Sciences.2002.
  • 6唐文,陈钟.基于模糊集合理论的主观信任管理模型研究[J].软件学报,2003,14(8):1401-1408. 被引量:236
  • 7Mekouar L,Iraqi Y,Boutaba R.A Reputation Management and Selection Advisor Schemes for Peer-to-Peer Systems[C]//15th IFIP/IEEE International Workshop on Distributed Systems:Operations & Management.CA,USA,2004.
  • 8Kamvar S D,Schlosser M T,Garcia-Molina H.The Eigentrust Algorithm for Reputation Management in P2P Networks[C]//Proceedings of the 12th International World Wide Web Conference.Budapest,Hungary:ACM Press,2003:640-651.
  • 9YamamotoD,Asahara,ItaoT,et al.Distributed Page rank:A distributed reputation model for open P2P networks[C]//Proceedings of the 2004 International Symposium on Applications and the Internet Workshops.2004.
  • 10Cornelli F,Damiani E,Vimercati D C,et al.Choosing reputable servants in a P2P network[C]//Lassoer D,ed.Proc of the 11th Int'l World Wide Web Conf.Hawaii:ACM Press,2002:441-449.

二级参考文献2

共引文献298

同被引文献27

  • 1张仕斌,刘全,曾鸿.基于开放式网络环境的模糊自主信任模型[J].清华大学学报(自然科学版),2006,46(z1):1109-1114. 被引量:7
  • 2杨文军,李涓子,王克宏.领域自适应的Web服务评价模型[J].计算机学报,2005,28(4):514-523. 被引量:45
  • 3王洪,唐晓青.设计质量评估体系模型及其构建方法研究[J].计算机集成制造系统,2006,12(1):50-53. 被引量:5
  • 4郑先荣,曹先彬.线性逐步遗忘协同过滤算法的研究[J].计算机工程,2007,33(6):72-73. 被引量:25
  • 5Kiran D,Lecturer M T. A greedy approach with criteria factors for QoS based Web service discovery[C]//Proceedings of the 2nd Bangalore Annual Compute Conference. NY: ACM, 2009:1-5.
  • 6Segaran T. Programming Collective Intelligence[M].南京:东南大学出版社,2008:167-196.
  • 7Ding Yi, Li Xue. Time Weight Collaborative Filter [C]// Proceedings of the 14th ACM International Conference on Information and Knowledge Management (CIKM' 05). Bremen, German: ACM, 2005: 485-492.
  • 8Kukar M, Si L. Drifting Concepts as Hidden Factors in Clinical Studies[C]// Artificial intelligence in Medicine 9th Conference on Artificial Intelligence in Medicine in Europe(AIME 2003). Protaras, Cyprus: IEEE, 2003: 355-364.
  • 9Zliobaite I. Learning under Concept Drift: an Overview [R]. USA: Faculty of Mathematics and Informaties, Cornell University, 2010.
  • 10Ebbinghaus H. Memory: A Contribution to Experimental Psychology[J/OL]. http://psy, ed. asu. edu/-classics/Ebbing- haus/index. htm.

引证文献2

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部