期刊文献+

基于稀疏核偏最小二乘法的短期负荷预测研究 被引量:2

Study on short-termload forecasting based on sparse kernel partialaleast squares
下载PDF
导出
摘要 支持向量机方法已成功地应用在负荷预测领域,但它在训练数据时存在数据处理量太大、处理速度慢等缺点。为此提出了一种基于稀疏核偏最小二乘法的预测方法,通过在高维特征空间的稀疏化,可减少在训练过程中的数据量,从而提高预测的速度和精度,将该方法应用于短期负荷预测中,与SVM方法相比,得到了较高的预测精度。 The support vector machine (SVM) has been successfully applied to the load forecasting area, but it has some disadvantages of very large data amount and slow processing speed. A better method of sparse kernel partial least squares was protmsed, the data amount is decreased in the training process by sparse in high dimension feature space, and the processing speed was improved. The simulation result shows that the algorithm has a better forecasting accuracy compared with the method of SVM.
出处 《华北电力大学学报(自然科学版)》 CAS 北大核心 2010年第2期24-28,共5页 Journal of North China Electric Power University:Natural Science Edition
关键词 电力系统 短期负荷预测 核函数 稀疏化 偏最小二乘法 power system short- term load forecasting kernel method sparse partial least squares
  • 相关文献

参考文献11

  • 1牛东晓,谷志红,邢棉,王会青.基于数据挖掘的SVM短期负荷预测方法研究[J].中国电机工程学报,2006,26(18):6-12. 被引量:120
  • 2Hipper H S, Pefreira C E, Souza R C. Neural network for short - term load forecasting: A review and evaluation [J]. IEEE Trans. Power System. 2001, 16 (2) : 44 - 54.
  • 3刘紫燕,冯丽.信息论与数据挖掘在电力负荷预测中的应用[J].现代机械,2003(5):73-75. 被引量:2
  • 4Vladimir N. Vapnik. Statistical Learning Theory [M]. New York: New York Wiley, 1998.
  • 5罗批,郭继昌,李锵,滕建辅.基于偏最小二乘回归建模的探讨[J].天津大学学报(自然科学与工程技术版),2002,35(6):783-786. 被引量:67
  • 6Bennett K P, Embreehts M J. An optimization perspective on kernd partial least squares [C]. Proceedings of the NATO Advanced Study Institute on Learning Theory and Practice. 2003: 2-21.
  • 7John S T, Nello C. Kernel methods for pattern analysis [M]. London: Cambridge University Press, 2004.
  • 8Engel Y, Marmor S, Meir R. Sparse online greedy support vector regression [C]. In 13th European Conference on Machine Learning, 2002.
  • 9Engel Y, Mannor S, Meir R. The kernel recursive least squares algorithm [J]. IEEE Transactions on Signal Processing , Vol. 52, Issue 8, 2004.
  • 10王定成,姜斌.在线稀疏最小二乘支持向量机回归的研究[J].控制与决策,2007,22(2):132-137. 被引量:24

二级参考文献28

  • 1约翰.内特 张勇(译).应用线形回归模型[M].北京:统计出版社,1992..
  • 2Senjyu T.One-hour-ahead load forecasting using neural network[J].IEEE Trans.on Power Syst.,2002,17(1):113-118.
  • 3Youshen Xia,Jun Wang.A general projection neural network for solving monotone variational inequalities and related optimization problems[J].IEEE Transactions on Neural Networks,2004,15(2):318-328.
  • 4Shevade S K,Keerthi S S,Bhattacharyy C,et al.Improvements to SMO algorithm for SVM regression[J].IEEE Trans.on Neural Network,2000,11(5):1188-1193.
  • 5Suykens J A K,Lukas L,Vandewalle J.Approximation using least squares support vector machine[A].IEEE Int Symposium 071 Circuits and Systems[C].Geneva,2000,(1):757-760.
  • 6Chen L D,Toru S.Data mining methods,applications,and tools[J].Information system management,2000,17(1):65-70.
  • 7Chapelle O,Vapnik V.Choosing multiple parameters for support vector machines[R].New York:AT&T Research Labs,2001.
  • 8ShevadeS K,Keerthi S S,Bhattacharyy C,et al.Improvements to SMO algorithm for SVM regression[J].IEEE Transaction Neural Networks,2000,11(5):356-362.
  • 9Syed N A,Liu H,Sung K K.Incremental learning with support vector machines[C].Proc of Workshop on Support Vector Machines at the Int Joint Conf on Artificial Intelligence.Sweden,1999:313-321.
  • 10Cauwenberghs G,Poggio T.Incremental and decremental support vector machines learning[C].Advances in Neural Information Systems.Cambridge:MIT Press,2001:409-415.

共引文献209

同被引文献13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部