期刊文献+

自回归滑动平均模型风速预测最大风能追踪策略研究 被引量:5

Research of a new MPPT strategy based on ARMA model wind prediction
下载PDF
导出
摘要 变速恒频风力发电机组在额定风速以下的最大风能追踪(Maximum Power point Tracking,MPPT)效果对于机组的效率有很大影响。现有的最大风能追踪策略不论是功率控制模式还是转速控制模式都是无风速测量下的最大风能追踪策略。究其原因,就在于风速无法精确测量。引入时间序列法中的自回归滑动平均模型(ARMA)对风速进行超前一步预测。根据该预测风速的大小来确定下一时刻最优功率点搜索的起始风机转速,再利用变步长转速扰动的最大风能追踪策略(爬山法)找到最优功率点。仿真表明,时间序列法对风速具有较好的预测效果,有效地缩小了最优功率点的搜索区间,缩短了搜索时间,提高了机组的运行效率。 The maximum power point tracking (MPPT) strategy has great impact on the efficiency of the Variable-Speed Wind Turbine Generator (WTG) when the wind speed is below the rated speed. Now the MPPT has two control methods that are power control method and speed control method. All of them had not used the wind speed information because the wind speed measured is usually inaccurate. In this paper, wind prediction method based on ARMA model was introduced. The previous wind speed information was used to predict the wind speed of next time. The predictive speed obtained by ARMA model was used to calculate the initial WTG rotor speed of the MPPT searching process. Then rotor speed disturbance was add to the initial speed and finally to complete the MPPT prrocess. Simulating results show that the ARMA wind speed prediction method can effectively reduce the MPPT searching area and search time. The effectiveness of the WTG is also improved.
作者 郭鹏
出处 《华北电力大学学报(自然科学版)》 CAS 北大核心 2010年第2期89-93,共5页 Journal of North China Electric Power University:Natural Science Edition
基金 中央高校基本科研业务费专项基金资助项目(09MG18)
关键词 最大风能追踪(MPPT) 自回归滑动平均模型(ARMA) 转速控制 爬山法 maximum power point tracking (MPPT) ARMA model rotor speed control hill climbing method
  • 相关文献

参考文献6

二级参考文献40

  • 1李建康.时间序列建模应用[J].江苏工学院学报,1994,15(2):72-77. 被引量:6
  • 2李晶,方勇,宋家骅,王伟胜.变速恒频双馈风电机组分段分层控制策略的研究[J].电网技术,2005,29(9):15-21. 被引量:53
  • 3高俊芳,吴清.时间序列ARMA模型及其应用[J].上海工程技术大学学报,1996,10(4):68-73. 被引量:11
  • 4Hatziargyriou N D, Karakatsanis T S, Papadopoulos M. Probabilistic load flow in distribution systems containing dispersed wind power generation [ J ]. IEEE Trans Power Systems, 1993, 8: 159-165.
  • 5Kellogg W D, Nehrir M H, Venkataramanan G, et al. Generation unit sizing and cost analysis for standalone wind, photovoltaic, and hybrid wind/PV systems [J]. IEEE Trans Energy Conversion, 1998, 13:70-75.
  • 6Papathanassiou S A, Kladas A G, Tegopoulos J A.Applications of artificial intelligence techniques in wind power generation [J]. Integrated Computer-Aided Engineering, 2001, 8: 231-242.
  • 7Li Shuhui, Wunsch Donald C. O' Hair Edgar A, et al.Using neural networks to estimate wind turbine power generation [ J ]. IEEE Trans Energy Conversion,2001, 16: 276-282.
  • 8Simoes Marcelo Godoy, Bose Bimal K, Ronald J Spiegel.Design and performance evaluation of a fuzzy-logic-based variable-speed wind generation system [J]. IEEE Trans Industry Applications, 1997, 33: 956-965.
  • 9Muljadi Eduard, Butterfield C P. Pitch-controlled variable-speed wind turbine generation [J ]. IEEE Trans Industry Applications, 2001, 37: 240-246.
  • 10Bhowmik Shibashis, Spee Rene, Enslin Johan H R.Performance optimization for doubly fed wind power generation systems [J ]. IEEE Trans Industry Applications, 1999, 35: 949-958.

共引文献248

同被引文献56

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部