期刊文献+

潇河大坝断面年径流序列随机变化规律研究 被引量:2

Study on Orderliness of Diversification of Runoff in Xiaohe River Dam
下载PDF
导出
摘要 采用径流序列分析对潇河流域1957-2007年径流量变化规律进行了研究。结果表明,近50 a来,潇河流域年径流量序列可划分为趋势成分、周期成分和随机成分三部分。其中趋势成分表现为两个方面:一方面是年径流量均值随时间减小,用指数函数表示;另一方面是年径流量在年际间的变化幅度随时间明显减小。周期成分用Fourier级数表示,建模试验表明,该径流序列具有3个显著性谐波,其周期为3.62 a、3.40 a和3.52 a,相应的余弦波系数为0.92、0.49和0.97,正弦波系数为-1.42、-0.43和-0.21。在周期成分中引入振幅衰减因子λ,且λ=0.944 0。独立随机成分宜用P-Ⅲ型概率分布表示。 According to the analysis of runoff sequence, it is studied the evolvement characters of runoff quantity from 1957 to 2007 in Xiaohe River. The results show that: since 1957, the runoff sequence of Xiaohe River can be divided into current component, seasonal component and random component. Current component represents two aspects. One is the equal value of runoff quantity becomes smaller with the time, which can be expressed by the index function. The other is the diversification range of runoff quantity becomes smaller with the time, which can be expressed by the gene of swing attenuation ( .4 ) in the seasonal component. In this paper, a is equal to 0.944 0. The seasonal component can be expressed by the progression of Fourier. The modeling examination shows that the runoff sequence has three notable humorous waves, and their periods are 3.65 years, 3.40 years and 3.52 years, respectively. The coefficients of the corresponding cosine waves separately are 0.92, 0.49 and 0.97. At the same time, the coefficients of the corresponding sine waves separately are -1.42, -0.43 and -0.21. The independence random component is suitable to be expressed by the probability distribution of the P-Ⅲ style.
出处 《天津农学院学报》 CAS 2010年第1期10-13,共4页 Journal of Tianjin Agricultural University
基金 天津农学院科学研究发展基金资助项目"基于非充分灌溉的灌溉预报模型研究"(2008N007)
关键词 径流序列 趋势分析 随机成分 建模试验 runoff sequence current component analysis random component modeling examination
  • 相关文献

参考文献1

二级参考文献50

  • 1王盼成,贺松林.长江大通站水沙过程的基本特征Ⅰ.径流过程分析[J].华东师范大学学报(自然科学版),2004(2):72-80. 被引量:17
  • 2覃爱基,陈雪英,郑艳霞.宜昌径流时间序列的统计分析[J].水文,1993,12(5):15-21. 被引量:34
  • 3Michael B C. Determining the time of a permanent shift in the process mean of CUSUM control charts. Quality Engineering, 2005, 17(l): 87-93.
  • 4Booy C, LyeL M. A new look at flood risk determination. Water Resour. Bull., 1989, 25(5): 933-942.
  • 5Hense A. On the possible existence of a strange attractor for the southern oscillation. Beitr. Phys. Atmos., 1987, 60(1):34-47.
  • 6Tsonis A A, Elsner J B, Georgakakos K P. Estimating of the dimension of weather and climate attractors: important issue about the procedure and interpretation. Journal of Atmospheric Science, 1993, 50: 2549-2555.
  • 7Porato A, Ridofi L. Nonliear analysis of river time sequences. Water Resour. Res., 1997, 33(6): 1353-1367.
  • 8Liu Q, Islam S, Rodriguez-Iturbe I et al. Phase-space analysis of daily streamflow: characterization and prediction.Water Resource, 1998, 21: 463-475.
  • 9Wang Q, Gan T Y. Biases of comelation dimension estimates of streamflow data in the Canadian prairies. Water Resour. Res., 1998, 34(9): 2329-2339.
  • 10Mandelbrot B B. Statistical methodology for non-periodic cycles: from the covariance to R/S analysis. Annals of Economic and Social Measurement, 1972, 1: 259-290.

共引文献19

同被引文献10

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部