期刊文献+

一维单原子链晶格振动的定量研究 被引量:1

Quantitative research on the lattice vibration in one-demensional mono-atomic chain
下载PDF
导出
摘要 目的在谐和近似和最近邻近似下模拟沿[100]方向4种金属元素(Fe、Nb、W和Ta)的一维单原子链色散曲线。方法构建体心立方结构金属的一维单原子链模型,在此基础上用C语言编辑程序模拟一维单原子链的色散曲线,并对这些曲线进行分析。结果沿[100]方向Fe、Nb、W和Ta单原子链的色散曲线非常相似,只是数值上有些差异,其中Fe对应的频率(ω)最大,依次是Nb、W和Ta;4种金属的一维单原子链频率的数量级(THz)和对应金属的三维晶格振动频率的数量级完全相同。结论得到了一维单原子链色散曲线,为进行一维单原子链色散关系的实验奠定了基础。 Aim Within the harmonic approximation and nearest neighbour approximation, we want to simulate the dispersion curves of one-demensional mono-atomic chain for Fe, Nb, W and Ta along [100] direction. Methods By constructing one-demensional mono-atomic chain model for body centered cubic (BCC) metals, we compile a computer program in computer language C to simulate the dispersion curves of one-demensional mono-atomic chain. Results Along [100] direction, the disper- sion curves of Fe, Nb, W and Ta are very similar to each other although the actual degree of fit varies somewhat, in which the vibration frequency decreases for Fe, Nb, W and Ta successively. Order of magnitude of the vibration frequeney(THz) :in one-demensional mono-atomic chain for Fe, Nb, W and Ta agrees with that in three-demensional: Conclusion The dispersion curves of one-demensional mono-atomic chain for Fe, Nb, W and Ta, are obtained, which lays the foundation for carrying out experiment about the dispersion curves of one-demensional mono-atomic chain .
出处 《宝鸡文理学院学报(自然科学版)》 CAS 2010年第1期57-60,共4页 Journal of Baoji University of Arts and Sciences(Natural Science Edition)
基金 西安工程大学校管项目(09XG26) 陕西省教育厅科研项目(09JK447)
关键词 一维单原子链 恢复力常数 两体势 色散曲线 one-demensional mono-atomic chain constant of restorable force two-body potential dispersion curve
  • 相关文献

参考文献7

  • 1STASSIS C, ARCH D, MCMASTERS O D. Lattice dynamics of HCP Hf [J]. Phys Rev, 1981, B24 : 730-740.
  • 2WOODS A D B. Lattice dynamics of tantalum [J]. Phys Rev, 1964, 136: 781-3.
  • 3WOODS A D B, CHEN S H. Lattice dynamics of molybdenum [J]. Solid State Communications, 1964, 2: 233-9.
  • 4MINKIEWICZ V J, SHIRANE G, NATIANS R. Phonon dispersion relation for iron [J]. Phys Rev, 1967, 162: 528-31.
  • 5SINGH N. Effective pair potential and structural phase transitions of Cr, Mo, and W [J]. Phys Rev, 1992, B46: 90-97.
  • 6ZHANGJ M, ZHANG X J, XU K W. MAEAM investigation of phonons for alkali metals [J].J Low Temp Phys, 2008, 150: 730-738.
  • 7田文超,贾建援.单分子操纵技术[J].仪器仪表学报,2003,24(z1):531-533. 被引量:4

二级参考文献6

  • 1[1]Feynman R.There's Plenty of Room at the Bottom[J].J.Micro-electromech,1992,1:60~66.
  • 2[2]Crommie M.F.,Lutz C.P.,Eigler D.M.Imaging Standing Waves in a two-dimesional Electro Gas[J].Nature, 1993,363:524~527.
  • 3[4]Landman U.,Luedtke W.D.,Burnham N.A.,etc. Atomistic Mechanism and Dynamics of Adhesion, Nano-indentation and Fracture[J].Science,1990,248:454~461.
  • 4[5]伊贺健一,池上彻彦,荒川泰彦.光微机械电子学[M].北京:科学出版社,2002.
  • 5[6]Huang D.H.,Uchida H..Method for patterning atomic structures and method for fabricating atomic memory [M].1999,Tokyo,Japanese Patent.
  • 6白春礼.纳米科技及其发展前景[J].科学通报,2001,46(2):89-92. 被引量:124

共引文献3

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部