摘要
目的:研制心律失常辅助诊断系统,以减少医生的工作量,并提高其对心电信号诊断的准确性。方法:首先利用小波变换理论建立滤波和波形识别算法,提取出有效的特征参数;然后利用粗糙集理论约简特征参数并根据相应的分类决策规则,利用分支逻辑法对波形进行识别分类;最后利用模糊神经网络理论得出异常心拍的隶属度。结果:实现了滤波、波形识别、诊断分类等主要模块,形成了一个完整的系统。结论:该系统能识别十九种心律失常并得出异常心拍的隶属度和位置信息,对医生的诊断有良好的辅助作用。
Objective: Develop an assistant diagnosis system for arrhythmias which can reduce doctors' workload and improve their veracity of diagnosing ECG. Methods: Firstly, this paper achieves filter and detection of waves using wavelet transform and extracts parameters; Secondly, it reduces parameters using rough set and identifies arrhythmias according to relevant roles; At last, it gets the membership of abnormal heart beat by fuzzy neural network. Results: The main modules such as filter, detection of waves and identification of arrhythmias are achieved well, and a complete system is formed. Conclusions: This system can identify nineteen arrhythmias and get their membership and position. It could assist doctors in making the proper diagnosis on ECG potentially.
出处
《中国医学物理学杂志》
CSCD
2010年第2期1741-1746,共6页
Chinese Journal of Medical Physics
基金
国家863项目(No.2009AA04Z214)