期刊文献+

基于粒子群算法的织物组织结构识别 被引量:1

Recognition of Fabric Organization Based on Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 提出了一种基于粒子群算法的织物组织结构识别新方法。该方法采用USB数码显微镜摄取布样图像,经直方图均衡化以增加灰图图像对比度、二值化、去除噪声等一系列图像预处理,用经线纬线的宽度法来提取织物组织结构的特征,用粒子群算法进行识别分类。实验结果表明,通过该方法对织物组织结构的识别具有较高的准确率。 A new recognition algorithm is proposed for recognition of fabric organization based on particle swarm algorithm. The digital images of solid woven fabrics is captured by a USB digital microscope. Firstly, histogram equalization is usded to increase the contrast of gray map images, binary and conducted a series of image pre - processing image denoising. Then, width method with warp weft is used to extract the characteristics of the organizational structure of the fabric. Lastly,particle swarm optimization is used to identify categories. Experimental results show that the method has a high accuracy on the recognition of fabric organization structure.
出处 《湖北第二师范学院学报》 2010年第2期15-17,共3页 Journal of Hubei University of Education
关键词 PSO 图像 识别 粒子群 织物组织结构 pso image optimization recognition swarm intelligence fabric organization structure
  • 相关文献

参考文献3

二级参考文献19

  • 1Kennedy J,Eberhart R C,Shi Y.Swarm Intelligence[M].San Francisco:Morgan Kaufman Publisher,2001.
  • 2Kennedy J,Spears W M.Matching Algorithms to Problems:An Experimental Test of the Particle Swarm and Some Genetic Algorithms on the Multimodel Problem Generator[C].Proceedings of the IEEE Int'l Conference on Evolutionary Computation,Anchorage,AK,USA,1998-05:78-83.
  • 3Han Jawei,Kamber M.数据挖掘概念与技术[M].北京:机械工业出版社,2001.
  • 4Jain A K,Dubes R C.Algorithms for Clustering Data[M].New Jersey:Prentice-Hall,1988.
  • 5Selim S Z,Ismail M A.K-Means Type Algorithms:A Generalized Convergence Theorem and Characterization of Local Optimality[J].IEEE Trans.Pattern Anal.Mach.Intell,1984,6(1):81-87.
  • 6Pal S K,Wang P P.Genetic Algorithms for Pattern Recognition[M].Boca Raton:CRC Press,1996.
  • 7Bandyopadhyay S,Maulik U.Genetic Clustering for Automatic Evolution of Clusters and Application to Image Classification[J].Pattern Recognition,2002,35(2):1197-1208.
  • 8Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation[J ]. Journal of Electronic Image, 2004,13 (1) : 145 - 165.
  • 9Pal S K, King R R, Hashion A A. Automatic graylevel thresholding through index of fuzziness and entropy, Pattern Recognition, 1983,1 (1) : 141 - 146.
  • 10Murthy C A, Pal S K. Fuzzy thresholding, mathematical framework, bound functions and weighted moving average technique[J]. Pattern Recognition Letters, 1990, 11:197 - 206.

共引文献80

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部