期刊文献+

陪护机器人粒子滤波定位法中重采样算法研究 被引量:1

Research of Particle Filter Resampling Algorithm in Indoor Service Robot Localization
下载PDF
导出
摘要 针对室内陪护机器人粒子滤波定位方法,研究了四种粒子滤波重采样算法:多项式重采样算法、残差重采样算法、分层重采样算法和系统重采样算法,并分别对其进行仿真比较。实验证明残差重采样算法粒子收敛速度和粒子匮乏程度取折衷,性能优于其它三种重采样算法,在此基础上利用仿真实验结果在HHR-0303服务机器人上进行了实验。实验证明采用残差重采样算法的粒子滤波算法,利用声纳配合里程计定位的方案能达到定位目的。 Four of the particle filter resampling algorithms in indoor service robot localization is described in this paper, they are Multinomial Resampling,Residual Reampling,Stratified Resampling and Systematic Resampling. The simulation and comparison is also presented. It is proved the performance of the Residual Resampling is better than other three algorithms on the particle convergence speed and the pinch degree. The experiment has been done on the HHR - 0303 service robot. The experiment proved that the localization plan which introduces the Residual Resarnpling 81gorithm localizing with odometer and sonar can achieve the localizing aim.
作者 卢笑 孟正大
出处 《计算机技术与发展》 2010年第4期54-57,共4页 Computer Technology and Development
基金 国家高技术研究发展计划项目(2006AA040202)
关键词 陪护机器人 定位 粒子滤波 重采样算法 service robot localization particle filter resampling algorithm
  • 相关文献

参考文献10

  • 1李群明,熊蓉,褚健.室内自主移动机器人定位方法研究综述[J].机器人,2003,25(6):560-567. 被引量:68
  • 2Fox D, Burgard W, Thrun S. Markov Localization for Mobile Robots in Dynamic Environments[J]. Journal of Artificial InteUigent Research, 1999,11:391-427.
  • 3Godsill D S, Andrieu C. On Sequential Monte Carlo Sampling Methods for Bayesian Filtering[J ]. Statistics and Computing, 2000,10(3) : 197 - 208.
  • 4Pitt M, Shepard N. Filtering via simulation: auxiliary particle filters[ J ]. Journal of the Amersican Statistical Association, 1999,94(2) :590 - 599.
  • 5Berzuini C, Best N. Dynamic conditional independence models and Markov chain Monte Carlo methods[J]. Journal of the American Statistical Association, 1997,92 (5) : 1403 - 1412.
  • 6Belciken E, Acklam P J. Monte Carlo filters for non-linear state estimation[ J ]. Automatic, 2001,37 (1) : 177 - 183.
  • 7Cirncione C, Gurrieri G A. A Good Overview of Resampling and Related Methods[J ]. Social Science Computer Review, 1997,15(1):83-87.
  • 8Efrom B, Tibshirani R J. An Introduction to the Bootstrap [M]. [s. l. ]:Chapman & Hall,1993.
  • 9Liu J, Chen R. Sequential Monte - Carlo Methods for Dynamic Systerm[J ]. Theory and Methods, 1998,93:1032 - 1044.
  • 10Carpenter J, Clifford P, Fearmhead P. An Improved Particle Filter for Non- linear Problems[C]///IEEE Proc, Radar Sonar Navigation. [s. l. ] : [s. n. ], 1999:2 - 7.

二级参考文献36

  • 1Neim J, Tardos J D, et al. Fusing range and intensity images for mobile robot localization[ J]. IEEE Transaction on Robotics and Automation. 1999,15(1) : 76 -84.
  • 2Shiele B, Cmwley J. A comparison of position estimation techniques using occupancy grids [ J]. Robotics and autonomous systems. 12 (1994) : 163 -171.
  • 3Simmon R, Koenig S. Probabilistic navigation in partially observable environments[ A]. Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI95) [ C ]. 1995. 1080 -1087.
  • 4Smith R, Self M, Checseman P. A stochastic map for uncertain spatial relationships [ A ]: The Fourth International Symposium on Robotics Research[ C]. 1988. 467 -474.
  • 5Stroupe A W, Martin M C, Balch T. Distributed sensor fusion for object position estimation by multi-robot systems[ A]. PmceedinKs of the IEEE International Conference on Robotics and Automation (ICRA01)[C]. Seoul, Korea: May, 2001.1092-1098.
  • 6Thrun S, Fox D, Burgard W, Dellaert F. Robust Monte Carlo localization for mobile robots[ J]. Artificial Intelligence, 2001,128 : 99 -141.
  • 7Ulrich I, Nourbakhsh I. Appearance-based Place Recognition for Topological Localization[A]. Proc Of the IEEE International Conference on Robotics and Automation [C]. 2000,2:1023 -1029.
  • 8Weiss G, Wetzler C, Puttkamer E V. Keeping track ff poeition and orientation of moving indoor systems by correlation of range-finder scans[ A]. Proceedings of the IEEF,/RSJ/GI lnternatkmal Conference on Intelligent Robots and Systems "Advanced Robotic Systems and the Real World "[ C ]. Munich: Germany. 1994, ( 1 ) : 595 - 601.
  • 9Anousaki G C, Kyrlakapoulos K J. Simultaneous localization and map building for mobile robot navigation[J]. IEEE Robotics and Automation Magazine, September, 1999:42-53.
  • 10Arms K, Tomatis N. Improving robustness and precision in mobile robot localization by using laser range finding and monocular vision [ A ]. Proc Of the 3rd European Workshop on Advanced Mobile Robot [C]. Zurich, Switzedand, 1999. 177-185.

共引文献67

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部