期刊文献+

复杂网络维的测量

Measuring Dimensions for Complex Networks
下载PDF
导出
摘要 近几年来,科学领域内许多不同学科学者对复杂网络中的维产生了关注和研究,维在复杂网络的研究中起着越来越重要的作用,从而成为国际科学研究前沿领域内的一个新热点。介绍了关于复杂网络中的维的三种定义,例如黎曼Zeta函数、容量维数等,然后说明了维数的一些性质并介绍了捷径模型,最后将这些理论应用在Ising模型中并对未来的发展进行了展望。通过对复杂网络中的维的测量,可以更加深入地了解复杂网络并将其更好的应用。 Several studies in different fields have been done on the fractal dimensions of complex networks . Dimensions play more important role in complex network. As a result, it has formed a new science field, Introduce three ways to resolve the problem, such as the complex network Zeta function and volume dimension. Then show some properties of dimensions and introduce shortcut model. At last use results from the theory to Ising mode and present challenges for researchers in the foreseeable future. By measuring the dimensions of complex networks,give an insight into the complex network and apply it better.
出处 《计算机技术与发展》 2010年第4期61-64,共4页 Computer Technology and Development
基金 山东省信息产业发展专项基金(2008R00038)
关键词 复杂网络 捷径模型 coraplex network dimensiun shortcut model
  • 相关文献

参考文献9

  • 1Barabasi A L, Albert R. Emergence of scaling in random network[ J ]. Science, 1999,286 (5439): 509 - 512.
  • 2Shanker O. Defining dimension of a complex network Mod [J]. Phys. Lett. B,2007,21:321 - 326.
  • 3Shanker O. Complex Network Dimension and Path Counts [J]. Theoretical Computer Science,2009(9) : 1 - 9.
  • 4陶少华,刘玉华,许凯华,贾永灿.基于容量维数的复杂网络自相似性研究[J].计算机工程,2008,34(2):175-177. 被引量:6
  • 5谢和平,张永平.分形几何[M].重庆:重庆大学出版社,1990.
  • 6Buckley F, Harary F. Distance in Graphs[ M]. California: Addison- Wesley publishing company, 1990.
  • 7Shanker O. Sharp dimension transition in a shortcut model [J]. J. Phys. A: Math. Theor. ,2008,41(28):1-7.
  • 8Newman M E J . The structure and function of complex networks[ J ]. SIAM Review, 2003,45 (2) : 167 - 256.
  • 9Watts D J, Strongatz S H. Collective dynamics of "small- world" network[ J ]. Nature, 1998,393 (6684) : 440 - 442.

二级参考文献9

  • 1Erdos P, Renyi A. On the Evolution of Random Graphs[J]. Public Mathematics Institute Hung Academic Science, 1960, 38(5): 17-61.
  • 2Watts D J, Strogatz S H. Collective Dynamics of "Small-world" Networks[J]. Nature, 1998, 393(4): 440-442.
  • 3Barabasi A L, Albertr. Emergence of Scaling in Random Networks[J]. Science, 1999, 286(15): 509-512.
  • 4Cladarellg, Capoccl A, De L R P, et al. Scale-free Networks from Varying Vertex Intrinsic Fitness[J]. Physical Review Letter, 2002, 89(25): 1-4.
  • 5Krapivsky P L, Redner S, Leyvraz F. Connectivity of Growing Random Networks[J]. Physical Review Letter, 2004, 85(21): 4629-4632.
  • 6Bianconi G, Barabasi A L. Competition and Multi-scaling in Evolving Networks[J]. Europhysical Letter, 2001, 55(4): 436-442.
  • 7Li X, Chen G R. A Local-world Evolving Network Model[J]. Physical A, 2003, 328(1/2): 274-286.
  • 8谢和平,张永平.分形几何[M].重庆:重庆大学出版社,1990.
  • 9Newman M E J. The Structure and Function of Complex Networks[J]. Siam Review, 2003, 45(7): 1-48.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部