期刊文献+

K-means与朴素贝叶斯在商务智能中的应用 被引量:6

Application Research of K-Means Clustering and Naive Bayesian Algorithm in Business Intelligence
下载PDF
导出
摘要 不同的客户给企业带来的效益并不相同,为了提高企业的客户关系管理水平,采用基于K-means的聚类的Naive Bayesian算法来预测客户价值,从而使企业可以针对不同的客户采用不同的营销策略,为企业决策提供依据。朴素贝叶斯分类模型是一种简单有效的分类方法,它理论基础好,分类精度高,由于朴素贝叶斯分类中的独立假设前提,使得在特征选择步骤能否准确有效的分类显得尤为重要。实验结果表明,该算法能在保证一定的准确率的同时,可以预测出更多的潜在高价值客户。 Different customers benefits to enterprise are not the same,in order to improve the level of the enterprise customer relationship management, use the Naive Bayesian algorithm based on the K - means clustering to forecast the customer value ,so that enterprises can use different marketing strategies for different customers. And this will provide a basis for business decisions. Naive Bayesian Classification Model is a simple but efficient solution, and it has solid theory foundation and high accuracy rate of dassifieation, an effective feature selection is very important for an NB- based classifier which uses the conditional independence assumption. Experimental results show that the algorithm can guarantee a certain degree of accuracy and can predict more high- value potential customers.
机构地区 合肥工业大学
出处 《计算机技术与发展》 2010年第4期179-182,共4页 Computer Technology and Development
基金 国家高技术研究发展计划(863)项目(2007AA04Z116) 国家自然科学基金项目(70871033)
关键词 客户关系管理 RFM模型 朴素贝叶斯 聚类 CRM RFM model Naive Bayesian clustering
  • 相关文献

参考文献7

  • 1Goodman J. Leveraging the customer database to your comapetitive advantage[J]. Direct Marketing, 1992,55(8) :26 - 27.
  • 2赵晓煜,黄小原.基于数据挖掘的客户价值预测方法[J].东北大学学报(自然科学版),2006,27(12):1393-1396. 被引量:7
  • 3王珊.数据仓库技术与联机分析处理[M].北京:科学出版社,1999.47-65.
  • 4Kowadlo G. Improving the robusmess of naive physics airflow mapping, using Bayesian reasoning on a multiple hypothesis tree[J ]. Robotics and Autonomous Systems, 2009 (3) : 12 -13.
  • 5余瑞康,施润身.聚类思想在贝叶斯算法中的应用[J].计算机工程与应用,2006,42(28):159-160. 被引量:10
  • 6Berry M J A, Linoff G S. Data Mining Techniques:for Marketing, Sales, and Customer Relationahip Management [ M ]. Beijing: China Machine Press, 2006:103 - 122.
  • 7HanJiawei,KamberM.数据挖掘:概念与技术[M].北京:机械工业出版社,2005:14-17.

二级参考文献16

  • 1[1]Wedel M,Kanmakura W.Marketing data,models and decision[J].Research in Marketing,2000,17:203-208.
  • 2[2]Berry M J A,Linoff G.Data mining techniques for marketing,sales and customer support[M].New York:Wiley Press,1997.45-53.
  • 3[3]Shaw M J.Knowledge management and data mining for marketing[J].Decision Support System,2001,31:127-137.
  • 4[4]Goodman J.Leveraging the customer database to your competitive advantage[J].Direct Marketing,1992,55(8):26-27.
  • 5[5]Bult J R,Wansbeek T J.Optimal selection for direct mail[J].Marketing Science,1995,14(4):378-394.
  • 6[6]Stone B.Successful direct marketing methods[M].Lincolnwood:NTC Business Books,1995.128-139.
  • 7[7]Liu D R,Shih Y Y.Integrating AHP and data mining for product recommendation based on customer lifetime value[J].Information & Management,2005,42(7):387-400.
  • 8[8]Alex B,Stephen S,Kurt T.Building the data mining application for CRM[M].London:McGraw Hill Companies,Inc,2001.235-246.
  • 9[9]Dunham M H.Data mining:introductory and advanced topics[M].New York:Prentice Hall,2001.97-99.
  • 10[10]Han J,Kamber M.Data mining:concepts and techniques[M].San Francisco:Morgan Kaufmann Publishers,Inc,2001.236-248.

共引文献68

同被引文献43

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部