期刊文献+

基于多目标优化的公交车调度问题的模型与算法 被引量:2

Model and Algorithm for the Dispatch of Public Buses Based on Multi-objective Optimization
下载PDF
导出
摘要 针对1条公交线路上的公交车调度方案,综合考虑公交公司和乘客的利益,利用多目标优化的方法建立了公交车调度的数学模型,给出了载客满意度函数和乘客等待时间满意度函数,采用了高性能的遗传优化算法对全天公交车运营的状况进行了数值模拟。仿真结果表明,选择采用将全天发车策略细分18个时段的模型,可得到最优的发车时刻策略。该模型可有效地改善公交车辆运营调度优化效果,提高公交车辆的运营效率,为城市公交车辆调度管理提供了合理、有效的调度方法。 In order to obtain a method of dispatching buses in a bus line, a mathematical model with multi objective optimization of the problem of public buses dispatch was established when the benefit of travelers and transport companies were comprehensively taken into consideration. The passengers load and their waiting time were discussed by the functions of satisfaction degree, and the numerical simulation was conducted for the operation situation of public transport in a day by means of high performance genetic optimal algorithm. The simulation results demonstrate that the optimum tactic of bus dispatching in this line can be obtained by applying the model of departure in 18 time quantum interval in a day. Moreover, the method can effectively improve the optimizing effect of operation on dispatching of public transport and thus further enhance its operation efficiency, which provides a reasonable and effective method for dispatching management of urban public transport.
作者 赵威
出处 《交通信息与安全》 2010年第1期79-83,89,共6页 Journal of Transport Information and Safety
关键词 公交车调度 多目标优化 遗传算法 客流量 满载率 bus dispatch multi-objective optimization genetic algorithm number of passengers proportion in loading
  • 相关文献

参考文献6

  • 1晏烽,广晓平.基于双层规划的公交车调度问题的模型与算法[J].兰州交通大学学报,2008,27(6):75-79. 被引量:7
  • 2Adamski, A, Turnau A, Simulation support tool for real time dispatching control in public transport[J]. Transportation Research Part A: Policy and Practice, 1998,32(2):73-87.
  • 3Celikoglua H B, Cigizoglub H K. Modelling public transport trips by radial basis function neural networks [J]. Mathematical and Computer Modelling, 2007,45 (3-4) : 480-489.
  • 4Vails V F, Quintanilla B S. A hybrid genetic algorithm for the resource-constrained project scheduling problem[J].European Journal of Operational Research, 2008,185(2) :495 -508.
  • 5Komurcu M I, Tutkun N, Ozolcer I H, et al. Estimation of the beach bar parameters using the genetic algorithms[J].Applied Mathematics and Computation, 2008,195(1):49-60.
  • 6阎平凡 张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2001..

二级参考文献4

共引文献55

同被引文献13

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部