摘要
针对传统支持向量机(SVM)多分类算法分类效果欠佳的问题,研究基于粗糙集(RS)理论和模糊支持向量机(FSVM)多类算法的模式分类新方法。首先用RS属性约简方法去除冗余信息,然后用FSVM结合三叉分类树多类算法对约简后的样本分类。用本文方法在UCI数据库的数据集上做实验,与其他方法相比分类速度和精度显著提高,说明该方法是有效的。
Aiming at inefficiency problem of traditional support vector machines (SVM) multi-class algorithm,based on fuzzy support vector machine (FSVM) multi-class algorithm and rough set (RS) theory,a new method of pattern classification is researched. First,the RS method is used to eliminate redundant information with attribute reduction method. Then combining with triple decision tree algorithm,FSVM multi-class algorithm is used to classify the reduced samples. By Using the method proposed in this paper,simulation experiments are done on UCI database. Compared with other methods ,the results show speed and accuracy of classification were significantly increased. So the method is effective.
出处
《科技通报》
北大核心
2010年第2期249-252,共4页
Bulletin of Science and Technology
基金
中国科学院智能信息处理重点实验室开放课题
江苏省高校自然科学基础研究项目(08KJB520003)资助
关键词
模式识别
模糊支持向量机
粗糙集
属性约简
pattern recognition
fuzzy support vector machine
rough sets theory
attribute reduction