期刊文献+

基于粗糙集与模糊支持向量机的模式分类方法研究 被引量:11

Method of Pattern Classification Based on FSVM and RS Theory
下载PDF
导出
摘要 针对传统支持向量机(SVM)多分类算法分类效果欠佳的问题,研究基于粗糙集(RS)理论和模糊支持向量机(FSVM)多类算法的模式分类新方法。首先用RS属性约简方法去除冗余信息,然后用FSVM结合三叉分类树多类算法对约简后的样本分类。用本文方法在UCI数据库的数据集上做实验,与其他方法相比分类速度和精度显著提高,说明该方法是有效的。 Aiming at inefficiency problem of traditional support vector machines (SVM) multi-class algorithm,based on fuzzy support vector machine (FSVM) multi-class algorithm and rough set (RS) theory,a new method of pattern classification is researched. First,the RS method is used to eliminate redundant information with attribute reduction method. Then combining with triple decision tree algorithm,FSVM multi-class algorithm is used to classify the reduced samples. By Using the method proposed in this paper,simulation experiments are done on UCI database. Compared with other methods ,the results show speed and accuracy of classification were significantly increased. So the method is effective.
出处 《科技通报》 北大核心 2010年第2期249-252,共4页 Bulletin of Science and Technology
基金 中国科学院智能信息处理重点实验室开放课题 江苏省高校自然科学基础研究项目(08KJB520003)资助
关键词 模式识别 模糊支持向量机 粗糙集 属性约简 pattern recognition fuzzy support vector machine rough sets theory attribute reduction
  • 相关文献

参考文献10

  • 1Vapnik V N. The Nature of Statistical Learning Theory [M]. New York :Springer, 1998.
  • 2Lin Chun-Fu,Wang Sheng-De. Fuzzy Support Vector Machines [J]. IEEE Transaction On Networks,2002,13 (2) :464-471.
  • 3祁立,刘玉树.基于两阶段聚类的模糊支持向量机[J].计算机工程,2008,34(1):4-6. 被引量:5
  • 4刘洋,张秋余.基于Huffman树的模糊多类支持向量机[J].辽宁工程技术大学学报(自然科学版),2008,27(1):96-99. 被引量:3
  • 5任东,于海业,王纪华,乔晓军.改进隶属度FSVM方法在多类别分类中的应用[J].农机化研究,2008,30(1):16-18. 被引量:2
  • 6陈小娟,刘三阳,满英,刘逵.一种新的模糊支持向量机方法[J].西安文理学院学报(自然科学版),2008,11(1):1-4. 被引量:4
  • 7PAWLAK Z W. Rough sets and intelligent data analysis [J ]. Information Science, 2002,147 (1-4) : 1-12.
  • 8Hsu Chih-Wei,Lin Chih-Jen. A comparison of methods for multi-class support vector machines[J]. IEEE Transactions on Neural Networks 2002,13(2):415-425.
  • 9Tang Fa-Ming. Study of Support Vector Machines Algorithm Based on Statistical Learning Theory [D]. Huazhong University of Science and Technology: Ph.D. Dissertation, 2005.
  • 10Zhao Hui. Study on Support Vector Machines Classification methods and their Application in Text Categorization [D]. Dalian University of Technology: Ph.D. Dissertation, 2005.

二级参考文献24

  • 1武方方,赵银亮,蒋泽飞.基于密度聚类的支持向量机分类算法[J].西安交通大学学报,2005,39(12):1319-1322. 被引量:11
  • 2张翔,肖小玲,徐光祐.基于样本之间紧密度的模糊支持向量机方法[J].软件学报,2006,17(5):951-958. 被引量:84
  • 3张翔,肖小玲,徐光祐.模糊支持向量机中隶属度的确定与分析[J].中国图象图形学报,2006,11(8):1188-1192. 被引量:38
  • 4[3]LIN Chun-fu,WANG Sheng-de.Fuzzy support vector machines with automatic membership setting[J].StudFuzz,2005(177):233-254.
  • 5[5]HUANG HP,LIU Y H.Fuzzy support vector machines for pattern recognition and data mining[J].International Journal of Fuzzy Systmas,2002,4(3):826-835.
  • 6[6]LIN Chun-fu,WANG Sheng-de.Fuzzy support vector machines[J].Neural Networks,2002,2(13):464-471.
  • 7严尉敏,吴伟明.数据结构(C语言版)[M].北京:清华大学出版社,1997:186-190.
  • 8BURGES C.L A tutorial on support vector machines for pattern recognition [J]. Data Mining and Knowledge Discovery, 1998, 2(2):121-167.
  • 9VAPNIK V. Statistical learning theory[M]. New York:Wiley- Interscience, 1998.
  • 10HSU CW, LIN CJ. A comparison of methods for multi-class support vector machines [J]. IEEE Transaction on Neural Network, 2002, 13(2):415-425.

共引文献10

同被引文献63

引证文献11

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部