期刊文献+

一种基于ART-2改进后的网格入侵检测模型

Improved ART-2-based Grid Intrusion Detection Model
下载PDF
导出
摘要 应用神经网络中的ART-2理论(adaptive resonance theory自适应共振理论),在传统ART-2模型的基础上增加了伴随神经元和重置系统B,解决入侵检测系统中可能出现的对渐变过程不敏感从而导致的预分类不完全的问题,通过与基于传统ART-2的入侵检测模型及基于朴素贝叶斯的入侵检测模型的对比,发现改进后的ART-2神经网络打破了传统ART-2对渐变过程不敏感的局限性,使得新模型能够分辨渐变过程,提高了预分类的能力。 The neural network ART-2 theory (adaptive resonance theory) was applied, based on the traditional ART-2, the adjoint neuron and reset system B were increased to have solved the problem of the incomplete pre-classification caused by the insensitivity to the process of gradual change in the intrusion detection system. By comparison with the intrusion detection model based on the traditional ART-2 and the intgusion detection model based on Naive Bayes, the results expatiated the improved ART-2 neural network broke the limitation of traditional ART-2 insensitive to the process of gradual change and improved the capacity of the pre-classification.
出处 《辽宁工业大学学报(自然科学版)》 2010年第1期11-15,共5页 Journal of Liaoning University of Technology(Natural Science Edition)
基金 辽宁省教育厅科研项目(2008308)
关键词 网格安全 入侵检测 ART-2 神经网络 grid security intrusion detection system adaptive resonance theory(ART-2) neural networks
  • 相关文献

参考文献4

二级参考文献14

  • 1姜卯生,王浩,姚宏亮.朴素贝叶斯分类器增量学习序列算法研究[J].计算机工程与应用,2004,40(14):57-59. 被引量:10
  • 2毛伟,徐蔚然,郭军.基于n-gram语言模型和链状朴素贝叶斯分类器的中文文本分类系统[J].中文信息学报,2006,20(3):29-35. 被引量:16
  • 3[1]Kumar S. Classification and detection of computer intrusions [D]. West Lafayetle: School of Liberal Arts Purdue University, 1995.
  • 4[2]Ghosh A K, Schwartzbard A. A study in using neural networks for anomaly and misuse detection[Z]. The 8th USENIX Security Symposium, Washington,1999.
  • 5[4]Snapp S. DIDS (distributed intrusion detection system ) - Motivation, architecture and early prototype [Z]. The 14th National Computer Security Conference, Washington, 1991.
  • 6[5]Cannady J. Artificial neural networks for misuse detection[Z]. The 21st National Information Systems Security Conference, Arlington, 1998.
  • 7[6]Dittrich D. Distributed denial of service (DDoS)attacks/tools [EB/OL ]. http: // staff. washington.edu/dittrich/misc/ddos/, 2003-09-06/2003-09-14.
  • 8[8]Lee W K. A data mining framework for constructing features and models for intrusion detection systems[D]. New York: Graduate School of Arts and Sciences, Columbia University, 1999.
  • 9[9]Carpenter G A, Grossberg S. ART2: Selforganization of stable category recognition codes for analog input patterns[J]. Applied Optics, 1987, 26(23): 4919-4930.
  • 10马吉胜,军械工程学院博士后研究工作报告,1999年

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部