期刊文献+

几种特殊矩阵的Pareto特征值问题

The Pareto Eigenvalue Problem of Some Matrices
下载PDF
导出
摘要 Pareto特征值问题是定义在正卦限上一类锥约束问题,在许多领域有着深厚的背景。将讨论Pareto特征值的一些理论性质,包括给定矩阵Pareto特征值范围及个数上界。引进了一类新矩阵,讨论并给出它的部分理论性质,可直接计算其最大Pareto特征值。 The Pareto eigenvaluc problem(PEP) is an important prototype of cone-constrained problems, which exhibits already many of mathematical difficulties arising in the context of complementarity conditions involving the positive orthant. In this paper, we discuss some theoretical issues such as, the bound of Pareto eigenvalues for given matrices. A new kind of matrix is introduced and analyzed, namely, Q-matrix, whose largest Pareto eigenvalue can be estimated.
机构地区 同济大学数学系
出处 《上海第二工业大学学报》 2010年第1期54-64,共11页 Journal of Shanghai Polytechnic University
基金 国家自然科学基金(No.10671145)
关键词 Pareto特征值 锥约束 特征值 非负矩阵 加边矩阵 对偶锥 Pareto, cone-constrained, eigenvalue, nonnegative matrix, bordered matrix, complementarity
  • 相关文献

参考文献9

  • 1IUSEM A, SEEGER A. On convex cones with infinitely many critical angles[J].Optimization, 2007, 56:115-128.
  • 2PINTO D COSTAA, SEEGER A. Cone-constrained eigenvalue problems: theory and algorithms[J]. Computational Optimization and Applications, 2008, 45: 25-57.
  • 3SEEGER A. Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions[J]. Linear Algebra and Its Applications,1999,292:1-14.
  • 4SEEGER A, TORKI M. On eigenvalues induced by a cone constraint [J].Linear Algebra and Its Applications, 2003, 372:181-206.
  • 5SEEGER A, TORKI M. Local minima of quadratic forms on convex cones [J].Journal of Global Optimization, 2009, 44:1 - 28.
  • 6TAM B. The Perron generalized eigenspace and the spectral cone of a cone-preserving map[J]. Linear Algebra and Its Applications, 2004, 393:375-429.
  • 7LAVILLEDIEU P, SEEGER A. Existence de valeurs propres pour les systemes multivoques: resultats anciens et nouveaux[J]. Annales des Sciences Mathematiques du Quebec, 2000, 25: 47-70.
  • 8HORN R A, JOHNSON C R. Matrix Analysis[M].Cambridge: Cambridge University Press, 1985.
  • 9ADLY S, SEEGER A. A nonsmooth algorithm for cone-constrained eigenvalue problems, Computational Optimization and Applications[J/OL]. http://www.springerlink.com/content/nw01m1h01gv167v8/, 2009-11-24/2009-11/25.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部