期刊文献+

一种加入创新粒子的粒子群 被引量:3

A New PSO by Adding Innovative Particles
下载PDF
导出
摘要 粒子群算法是一种基于群体智能的随机并行算法,它在很多优化问题中都得到了比较好的应用。本文针对粒子群容易陷入局部最优解,提出了一种加入创新粒子的粒子群,实验模拟结果表明加入创新粒子的粒子群有更好的结果和收敛速度。 Particle Swarm Optimization (PSO) is a swarm intelligence based on stochastic parallel algorithm, which in many optimization problems have been a better application. In this paper, particle swarm easily trapped into local optimal solution, a new PSO by adding innovative particles is proposed. Experimental simulation results show that it has better results and the convergence rate, I believe that in other specific optimization problems by adding innovative particles will have a very good performance of PSO.
出处 《数学理论与应用》 2010年第1期14-17,共4页 Mathematical Theory and Applications
关键词 粒子群 自适应 非线性 Particle Swarm Optimization Innovation particles Local solution
  • 相关文献

参考文献6

  • 1Kennedy J, Eberhart R. Particle swarm optimization[C]. IEEE Int. Conf. Neural Net Works,1995,1942 - 1948.
  • 2Shi Y. H. , Eberhart R.C. Amodified particle swarm optimization[ C]. IEEE International Conf on Evolutionary Computation, Anchorage, Alaska, 1998,69 - 73.
  • 3张燕,汪镭,康琦,吴启迪.微粒群优化算法及其改进形式综述[D].博士论坛,2005.
  • 4李洪亮,侯朝桢,周绍生.一种高效的改进粒子群优化算法[J].计算机工程与应用,2008,44(1):14-16. 被引量:20
  • 5Binkley K.J. , Hagiwara M. Partele swarm optimization with area of influence : increasing the effectiveness of the swarm[ J]. Swarm Intelligence Symposium ,2005,45 - 52.
  • 6Ioan Cristian Trelea. The particle swarm optimization algorithm: convergence analysis and parameter selection [J]. Elsevier Science B. V. , 2002,317 -325.

二级参考文献9

  • 1陆克中,王汝传,帅小应.保持粒子活性的改进粒子群优化算法[J].计算机工程与应用,2007,43(11):35-38. 被引量:14
  • 2Kennedy J,Eberhart R C.Particle Swarm Optimization[C]//Proc IEEE International Conference on Neural Networks.Piscataway,NJ:IEEE Service Center,1995:1942-1948.
  • 3Eberhart R C,Shi Y.Particle Swarm Optimization developments,applications and resources[C]//Proc Congress on Evolutionary Computation 2001.Piscataway,NJ:IEEE Press,2001:81-86.
  • 4Shi Y,Eberhart R C.A modified particle swarm optimizer[C]//Proceedings of the IEEE Congress on Evolutionary Computation.Piscataway,NJ:IEEE Press,1998:303-308.
  • 5Shi Y,Eberhart R C.Empirical study of particle swarm optimization[C]//Proceedings of the IEEE Congress on Evolutionary Computation.Piscataway,NJ:IEEE Press,1999:1945-1950.
  • 6Clerc M,Kennedy J.The particle swam-explosion,stability,and convergence in a multidimensional complex space[J].IEEE Transactions on Evolutionary Computation,2002,6(1):58-73.
  • 7Carlisle A,Dozier G.An off-the-shelf PSO[C]//Proceedings of the Workshop on Particles Swarm Optimization.Indianapolis,IN:Purdue School of Engineering and Techology,IUPUI,2001.
  • 8Potter M A,de Jong K A.A cooperative coevolutionary approach to function optimization[C]//The Third Parallel Problem Solving from Nature.Jerusalem,Israel:Springer-Verlag 1994:249-257.
  • 9Tawdross P,Konig ALocal Parameters Particle Swarm Optimization[C]//Proceedings of the Sixth International Conference on Hybrid Intelligent Systems,2006:52-55.

共引文献19

同被引文献16

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部