期刊文献+

基于视觉注意模型的肝脏病灶区域自动提取方法 被引量:3

Auto-detection algorithm of liver focus based on visual attention model
下载PDF
导出
摘要 医学图像的感兴趣区域(region of interest,ROI)提取在计算机辅助诊断中有着重要作用。本文借助视觉注意模型的框架,针对肝脏区域病变组织与周围组织灰度差异小、弱纹理的特点,提出了一种新的肝脏CT(computer tomography)图像中异常组织区域提取方法。本方法首先筛选一组与肝脏纹理相关的统计特征和基于方向分形维的显著度特征因子,然后由各特征分量显著性图合成总显著性图,最后根据显著性图标识病变发生的区域。试验表明,本文方法能准确找到肝脏区域中发生病变的位置,为显著性图在医学影像ROI提取提供了有效途径。 The detection of region of interest(ROI) in medical images has played a very important role in computer aided diagnosis.Because liver-focus organs have the characteristics of weak textural and small intensity differences with their neighborhood,a novel algorithm of extracting abnormal regions in liver CT images has been proposed in this paper,which uses visual attention model.Firstly,a set of statistical features related to liver textures and some salient factors based on directional fractals are selected.Then,an overall saliency map is composed from several subsalient maps of feature components.Finally,the regions with liver focus are located by labeling the saliency map. Experiments show that the locations of liver focus regions could be found using the proposed method accurately and using saliency maps is an effective way of extracting ROI in medical images.
作者 马莉 王文峰
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第3期635-642,共8页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(60775016) 浙江省自然科学基金(Y106185)资助项目
关键词 图像分析 视觉注意模型 ROI提取 肝脏CT image analysis visual attention model ROI extraction liver computer tomography
  • 相关文献

参考文献14

  • 1TOMASZ A. Detection of clustered microcalcifications in small field digital mammography[ J]. Journal of Computer Methods and Programs in Biomedicine, 2006, 81 ( 1 ) : 56-65.
  • 2LEE S K. A computer-aided design mammography screening system for detection and classification of microcalcifications [ J ]. International Journal of Medical Informatics, 2000,60( 1 ) :29-57.
  • 3HSIEH F Y. A novel approach to the detection of small objects with low contrast [ J]. Journal of Signal Processing, 2006,86( 1 ) :71-83.
  • 4KOCH C, ULLMAN S. Shifts in selective visual attention: towards the underlying neural circuitry [ J ]. Journal of Human Neurobiology, 1985 (4) : 219 -227.
  • 5ITTI L, KOCH C, NIEBUR E. A model of saliency - based visual attention for rapid scene analysis [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20( 11 ) : 1254-1259.
  • 6ZHANG J B, REGTIEN P, KORSTEN M. Monitoring of dry sliding wear using fractal analysis [ J ]. Journal of Metrology and Measurement System, 2005,6 (2) : 111-118.
  • 7DAUGMAN J G. Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression [J]. IEEE Transactions on Acoustics, Speech and Signal, 1988,36(7) :1169-1179.
  • 8WANG W F, MA L. Liver contour extraction using modified snake with morphological multiscale gradients [ C ]. The 2nd International Conference on Graphic Communications. Wuhan, China, Dec. 2008 : 117-120.
  • 9马莉,单雅静.基于双视角乳腺X线图像的微钙化簇检测[J].仪器仪表学报,2009,30(1):109-114. 被引量:3
  • 10CHANDHURI B B, Sarker N. Texture segmentation using fractal dimension[ J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1995,17( 1 ) :72-77.

二级参考文献6

共引文献35

同被引文献41

  • 1鄢腊梅,袁友伟,周锋.基于RBF神经网络的三维网格实体模型重构的研究[J].机械科学与技术,2004,23(10):1249-1252. 被引量:2
  • 2GAO D S,HAN S Y,VASCONCELOS N.Discriminantsaliency,the detection of suspicious coincidences,andapplications to visual recognition. IEEE Transactionson Pattern Analysis and Machine Intelligence . 2009
  • 3BORJI A,AHMADABADI M N,ARAABI B N,et al.Online learning of task-driven object-based visual atten-tion control. Image and Vision Computing . 2010
  • 4KUAN Y H,KUO C M,YANG N C.Color-based imagesalient region segmentation using novel region mergingstrategy. IEEE Transactions on Multimedia . 2008
  • 5ZHANG W,WU Q M J,WANG G H,et al.An adaptivecomputational model for salient object detection. IEEE Transactions on Multimedia . 2010
  • 6GOPALAKRISHNAN V,HU Y Q,RAJAN D.Randomwalks on graphs to model saliency in images. IEEEComputer Society Conference on Computer Vision andPattern Recognition . 2009
  • 7Hou X,,Zhang L.Saliency detection:a spectral residual approach. IEEE Conference on Computer Vision and Pattern Recognition,CVPR’’07 . 2007
  • 8Guo C L,,Ma Q,Zhang L M.Spatio-temporal saliencydetection using phase spectrum of quaternion Fouriertransform. Proceedings of IEEE Conference on ComputerVision and Pattern Recognition . 2008
  • 9CL Guo,LM Zhang.A novel multiresolution spatio temporal saliency detection model and its applications in image and video compression. IEEE Transactions on Image Processing . 2010
  • 10Harel J,Koch C,Perona P.Graph-Based visual saliency. Proc.of the NIPS . 2006

引证文献3

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部