期刊文献+

卡氏积码的MDR码和自对偶码 被引量:4

MDR codes and self-dual codes on Cartesian product codes
下载PDF
导出
摘要 定义了12,,,ZrZrZrs上线性码C1,C2,,Cs的卡氏积码。利用子模同构定理,研究了在Zr1×Zr2××Zrs上卡氏积码C1×C2××Cs的秩与在12,,,ZrZrZrs码C1,C2,,Cs的秩的关系,借助这一关系,得到了MDR码的卡氏积仍为MDR码和自对偶码的卡氏积码也为自对偶码。 A Cartesian product code of the linear codes C1 … , C s in Zr1,… ,Zr was defined. According to the theorem of submodulo isomorphism, the relationship between the rank of the Cartesian product code C1 × C 2 ×…× Cs over Zr1 × Z r2 × …× Zrsand C1 , C 2, , C scodes overZ r1 × Z r2 × × Zrs were studied. Furthermore, it can include that Cartesian product code of MDS codes is MDR code, and so do the self -dual.
作者 刘修生
出处 《通信学报》 EI CSCD 北大核心 2010年第3期123-125,共3页 Journal on Communications
关键词 卡氏积码 极大距离码 中国剩余定理 rank Cartesian product maximum distance with respect to rank codes the Chinese remainder theorem
  • 相关文献

参考文献4

  • 1SHIROMOTO K. A singleton bound for codes over finite rings[J], Journal of Alagebraic Combinatorices,2000,(12): 95-98.
  • 2DOUGHERTY S T, SHIROMOTO K. MDR codes over Zk[J]. IEEE Transactions on Information Theory, 2000,46(1): 265-269.
  • 3SHIROMOTO K. Note on MDS codes over the integers modulo p^m[J]. Hokkaido Math Journal, 2000, 29:119-148.
  • 4DOUGHIERTY S T, HARADA M, SOLE E Self-dual odes over tings and the Chinese remainder theorem[J]. Hokkaido Math Journal, 1999, 28: 253-283.

同被引文献16

  • 1Wei V K. Generalized Hamming weights for linear codes[J]. IEEE Trans. Inform. Theory,1991,37: 1412-1418.
  • 2Horimoto H,Shiromoto K. On generalized Hamming weights for codes over finite chain rings[J]. Lecture Notes in Computer Science. 2001,2227: 141-150.
  • 3Wood J. Duality for modules over finite rings and applications to coding theory[J]. Amer. J. Math., 1999,121: 555-575.
  • 4Huffman W C,Pless V S. Fundamentals of error-correcting codes[M]. Cambridge: Cambridge University Press,2003.
  • 5Dougherty S T,Ramadurai R. Higher weight distributions of codes from projective ptanes[J]. Math. J. Okayama Univ.,2007,49: 149-161.
  • 6Bachoc C. Application of coding Theory to the construction of modular lattices[J]. J. Combin. Theory, Ser. A, 1998, 78:92-119.
  • 7Chapan R, Dougherty S T, Gabort P, Sole P. Self-dual codesover F3 + vF3[J], http://academic. scranton.edu/faculty/doughertysl/sd.htm.
  • 8Hammons A R, Kumar Jr P V, Calderbank A R, Sloane N J A, Sole P. The Z4 linearity of Kerdock, Preparata, Gethals and related codes[J]. IEEE Trans. Inform. Theory, 1994, 40: 301-319.
  • 9Bonnecaze A, Udayu P. Cyclic codes and self-dual codes overF2 + uF2[J]. IEEE Trans. Inform. Theory, 1999, 45: 1250-1255.
  • 10Udayu P, Bonnecaze A. Decoding of cyclic codes over F2 + uF2 [J]. IEEE Trans. Inform. Theory, 1999, 45: 2148-2157.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部