期刊文献+

正交各向异性圆柱体在轴压作用下的应力场 被引量:4

Stress Field of Orthotropic Cylinder Subjected to Axial Compression
下载PDF
导出
摘要 基于材料体积不可压假设,对轴向压缩作用下圆柱试件在加载面内的环向和径向应力分布进行理论分析,计算结果表明:当试件材料本构为正交各向异性时,环向和径向应力分布为半径的幂函数形式;试件材料为横观各向同性时,环向和径向应力为半径的二次函数.在圆柱试件轴线上环向和径向应力相等,且均具有最大值;试件圆周边界上径向应力为0,环向应力具有极小值.通过最大拉伸应变破坏理论对试件环向应变进行分析,获得了产生环向拉伸破坏时的临界轴向载荷;并采用Hill-蔡强度理论对试件圆周边界上计算得到的应力参量进行描述,得到了轴压作用下圆柱试件的Hill-蔡强度理论表达式,其不仅取决于轴向应力和试件材料的基本力学性能,还与试件轴向变形的应变率及应变率随时间的变化率相关. Based on the material volume constancy hypothesis, circumference and radial stresses of cylinder specimen were analyzed when the cylinder is loaded along the axial direction. Circumference and radial stress distribution is radius parameter power function when specimen material constitutive relation is orthotropic. The stress distribution is radius parameter quadrat- ic function for transveme isotropy material. Along the cylinder axial line, circumference and ra- dial stresses were maximum and equal to each other. In the circumference boundary surface, radial stress is zero and circumference stress value is the minimum. The max tensile circumference strain failure theory is applied to calculate critical axial loading. Circumference boundary layer failure criterion of orthotropic material cylinder is described by Hill-Tsai strength theory. The obtained strength theory is not only related to axial stress and specimen material mechanical properties, but also to specimen axial deformation strain rate and change rate of strain rate.
出处 《应用数学和力学》 CSCD 北大核心 2010年第3期285-294,共10页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(50874095) 国防973项目专题基金资助项目
关键词 正交各向异性 轴向压缩 轴对称 应力分布 应变率 orthotropic axial compression axial symmetry stress distribution strain rate
  • 相关文献

参考文献20

  • 1Cazacu O, Plunkett B, Barlat F. Orthotropic yield criterion for hexagonal closed packed metals[J]. International Journal of Plasticity, 2006, 22(7) : 1171-1194.
  • 2Plunkett B, Cazacu O, Barlat F. Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metals [ J]. International Journal of Plasticity, 2008, 24 ( 5 ) : 847-866.
  • 3曾纪杰,傅衣铭.正交各向异性圆柱壳的弹塑性屈曲分析[J].工程力学,2006,23(10):25-29. 被引量:2
  • 4Abd-Alla A M, Farhan A M. Effect of the non-homogenity on the composite infinite cylinder of orthotropic material[J]. Physics Letters A, 2008, 372(5) : 755-750.
  • 5田燕萍,傅衣铭.考虑损伤效应的正交各向异性板的弹塑性后屈曲分析[J].应用数学和力学,2008,29(7):764-774. 被引量:2
  • 6Jeffrey E B, Ellen M A, Karl G. Finite element simulations of orthotropic hyperelasticity[ J]. Finite Elements in Analysis and Design, 2002, 38(10) : 983-998.
  • 7Romashchenko V A, Tarasovskaya S A. Numerical studies on the dynamic behavior of multilayer thick-walled cylinders with helical orthotropy[J]. Strength of Materials, 2004, 36(6) : 521-529.
  • 8Redekop D. Buckling analysis of an orthotropic thin shell of revolution using differential quadrature[J]. International Journal of Pressure Vessels and Piping, 2005, 82(8) : 618-624.
  • 9Grigorenko Y M, Rozhok L S. Influence of orthotropy parameters on the stress state of hollow cylinders with elliptic cross-section [ J]. International Applied Mechanics, 2007, 43 ( 12 ) : 1372-1379.
  • 10Xu H M, Yao X F, Feng X Q, et al. Fundamental solution of a power-law orthotropic and haft-space functionally graded material under line loads[ J]. Composites Science and Technology, 2008, 68( 1 ): 27-34.

二级参考文献40

  • 1杨强,陈新,周维垣.基于二阶损伤张量的节理岩体各向异性屈服准则[J].岩石力学与工程学报,2005,24(8):1275-1282. 被引量:22
  • 2Hill R.A theory of the yielding and flow of anisotropic metals[J].Proc Roy Soc (London),Ser A,1948,193(A1033):281~297.
  • 3Hill R.A general theory of uniqueness and stability in elastic/plastic solids[J].J Mech.Phys Solids,1958,7(2):209~225.
  • 4.
  • 5Nguyen S Q,Triantafyllidis N.Plastic bifurcation and post-bifurcation analysis for generalized standard continua[J].J Mech.Phys Solids,1989,37(5):545~556.
  • 6Timoshenko S.Theory of elastic stability[M].Mc Graw-Hill,1936.
  • 7陈铁云,沈惠申.结构的屈曲[M].上海:上海科学技术出版社,1993.
  • 8黎绍敏.稳定理论[M].北京:人民交通出版社,1989.
  • 9Hill R.The mathematical theory of plasticity[M].London:Oxford,1950.
  • 10Shanley F R.Inelastic column theory[J].JAS,1847,14(5):261~268.

共引文献15

同被引文献20

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部