摘要
将支持向量回归(SVR)算法引入隧道施工期围岩变形预测,并采用遗传算法来自动搜索支持向量回归算法的模型参数,形成GA-SVR算法。结合香河隧道的施工变形监测,建立起了公路隧道施工围岩变形预测的GA-SVR智能模型。采用此模型对香河隧道后继开挖的监测时间点进行变形预测,并与实测变形对比,所建立的GA-SVR智能模型预测最大相对误差仅为6.99%,平均预测相对误差仅为1.99%,完全可用于公路隧道施工期的围岩变形预测,并为类似工程提供了借鉴。
出处
《铁道标准设计》
北大核心
2010年第4期85-88,共4页
Railway Standard Design
基金
国家科技部863计划资助项目(2007AA11Z109)
北京交通大学科技基金项目(2006XM025)