期刊文献+

一类带非线性源的拟线性抛物方程解的熄灭问题

Quenching Phenomena for a Quasilinear Parabolic Equation with Nonlinear Source
原文传递
导出
摘要 研究了一类拟线性抛物方程边值问题解的熄灭问题,非线性抛物方程在随时间增加时,不一定存在连续的解,有的问题解是整体存在的,有的问题解就不存在,熄灭是解不存在的一种。形如ut-div[σ(|荦u|2)荦u]=λup的拟线性抛物方程在RN中有界凸空间上的解的熄灭问题,是几何学领域率先提出的,此时方程的主部项不再是一致椭圆的,这是与p-Laplace型方程的主要区别也是难点所在,利用上下解方法及积分估计方法得到两类在有限时间内解熄灭的结果。研究中所利用方法是一种常用方法,可以推广到更一般的拟线性抛物方程的研究。 For many quasilinear differential equations, their origin may be traced in biology and astrophysics, as related with generalized reaction diffusion theory, non-Newtonian fluid theory, non-Newtonian filtration theory and the turbulent flow of a gas in porous medium.Quenching phenomena for a class of quasilinear parabolic equations are studied in this paper.In the time domain, nonlinear parabolic equations not necessarily have a continuous solution.For some equations, solutions exist as a whole, for others solutions may not exist.Quenching phenomena are related with cases where solutions do not exist in some time period.This paper considers the extinction of solutions of an initial boundary value problem of the quasilinear parabolic equation ut-divσ(|▽u|2)▽u=λup in a bounded convex domain of RN with N≥2.This problem is first introduced in the field of geometry.At this time, the principal part of the equation is no longer uniformly elliptic.Using upper and lower solutions and the integral estimate method, two results of the extinction of the solution are obtained.The results obtained can be extended to a more general form of quasilinear parabolic equations.
出处 《科技导报》 CAS CSCD 北大核心 2010年第6期29-31,共3页 Science & Technology Review
基金 江苏省教育厅自然科学基金项目(08KJB110005) 解放军理工大学理学院青年基金项目
关键词 熄灭 拟线性抛物方程 非线性源 extinction quasilinear parabolic equation nonlinear source
  • 相关文献

参考文献15

  • 1Asttita G,Marrucci G.Principles of non-Newtonian fluid echanies[M].New York:McGraw-Hill,1974.
  • 2Martinson L K,Pavlov K B.Unsteady shear flows of a conducting fluid with a theological power law[J].Masnitnaya Gidrodinamika,1971,2:50-58.
  • 3Kalashnikov A S.On a nonlinear equation appearing in the theory of non-stationary filtration[J].Trudy Seminara Petrovsk,1978,5:60-68.
  • 4Esteban J R,Vazquez J L.On the equation of turbulent filtration in onedimensional porous media[J].Nonlinear Analysis,1982,10:1303-1325.
  • 5Kalashnikov A S.The nature of the propagation of perturbations in problems of non-linear heal conduction with absorption[J].USSR Computational Mathematics and Mathematical Physics,1974,14:70-85.
  • 6Gu Y G.Necessary and sufficient conditions of extinction,of solution on parabolic equations[J].Acta Mathematica Sinica,1994,37:73-79.
  • 7陈松林.一类反应扩散方程解的熄灭现象[J].应用数学和力学,2001,22(11):1217-1220. 被引量:10
  • 8Evans L C,Knerr B F.Instantaneous shrinking of the support of non-negative solutions to certain nonlinear parabolic equations and variational inequalities[J].Illinois Journal of Mathematics,1979,23:153-166.
  • 9Lair A V.Finite extinction time for solutions of nonlinear parabolic equations[j].Nonlinear Analysis,Theory,Methods & Applications,1993,21:1-8.
  • 10Li Y X,Wu J C.Extinction for fast diffusion equations with nonlinear sources[J].Electronic Journal of Differential Equations,2005,2005:1-7.

二级参考文献22

  • 1顾永耕.抛物型方程的解熄灭(extinction)的充要条件[J].数学学报(中文版),1994,37(1):73-79. 被引量:21
  • 2蔡日增.一类半线性抛物型方程的解熄灭现象[J].南京大学学报(数学半年刊),1995,12(1):116-120. 被引量:1
  • 3Astrita G, Marrucci G. Principles of Non-Newtonian Fluid Mechanics[M].New York: McGraw-Hill, 1974.
  • 4Martison L K, Pavlov K B. Unsteady shear flows of a conducting fluid with a rheological power law[J]. Magrtitnaya Gidrodinamika, 1971, 2: 50- 58.
  • 5Kalashnikov A S. On a nonlinear equation appearing in the theory of non-stationary filtration[J]. Trudy Sem Petrovsk, 1978, 5: 60"68.
  • 6Bobisud L E. Existence of steady-state solutions for some one-dimensional conduction problems[J]. J Math Anal Appl, 1995, 195: 684- 701.
  • 7Cantrell R S, Cosner C. Diffusive logistic equations with indefinite weights: Population models in disrupted environments II[J]. SIAM J Math Anal, 1991, 22: 1043-1069.
  • 8Aronson D G, Peletier L A. Large time behavior of solutions of the porous nledium equation in bounded domain [J]. J Differential Equations, 1981, 39: 378-412.
  • 9Pao C V. Strongly coupled elliptic systems and application to Lotka- Volterra models with cross-diffusion [J]. Nonlinear Anall, 2005, 60: 1197-1217.
  • 10Pao C V. Asymptotic behavior of solutions for a parabolic equation with nonlinear boundary conditions [J]. Proc Amer Math Soc, 1980, 80: 587- 593.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部