期刊文献+

850级钢熔化焊焊缝的组织特征 被引量:1

Structure Characteristics of Weld Metal for 850MPa Grade Steel
原文传递
导出
摘要 利用金相显微镜、扫描电子显微镜及附带EDS系统和透射电子显微镜研究850 MPa级焊缝金属的微观组织,并通过分析焊缝金属凝固和相变过程,研究组织形成机制。发现原δ铁素体柱状晶晶界附近的锰和镍含量高于其心部含量。原δ铁素体柱状晶晶界附近组织由平行板条马氏体组成,板条宽度约为300 nm,原δ铁素体柱状晶心部组织由"交织状"板条马氏体组成,板条宽度约为400 nm。分析认为造成原δ铁素体柱状晶晶界附近和心部组织差异的重要原因是锰和镍的偏析,而焊缝金属良好的冲击韧性是因为存在30%"交织状"马氏体和一定量残余奥氏体。 The microstructures of 850 MPa grade weld metals were investigated by means of optical microscopy, scanning electron microscopy with EDS and transmission electron microscopy, and it was investigated on formation mechanism of microstructure by analyzing solidification and phase transformation. It is found that the content of Mn and Ni in the prior δ ferrite columnar boundary region (CBR) are more than in the columnar core. The micro- structure of the prior δ ferrite columnar boundary region consists predominantly of parallel lath martensite whose width is about 300 nm, while the microstructure of the prior δ-ferrite columnar core also consists mainly of interlaced lath martensite whose width is about 400 nm. The important reason that the microstructure of the prior δ ferrite columnar boundary region is different with columnar core is of Mn and Ni segregations. The good charpy impact toughness of weld metal is attributed to 30 % interlaced lath martensite and some residual austenite.
出处 《钢铁研究学报》 CAS CSCD 北大核心 2010年第3期19-22,共4页 Journal of Iron and Steel Research
基金 国家863高技术研究发展计划资助项目
关键词 焊缝金属 组织 性能 偏析 weld metal microstructures properties segregation
  • 相关文献

参考文献13

  • 1Bose Filho W W, Carvalho A L M, Bowen P. Micromechanisms of Cleavage Fracture Initiation From Inclusions in Ferritic Welds Part I. Quantification of Local Fracture Behaviour Observed in Notched Testpieces [J]. Materials Science and Engineering A,2007,460-461(1) :436.
  • 2Spanos G, Fonda R W. Mierostructural Changes in HSLA-100 Steel Thermally Cycled to Simulate the Heat-Affected Zone During Welding[J].Metallurgical and Materials Transactions A,1995,26(12):3277.
  • 3Thewlis G. Weldability of X100 Linepipe [J].Science and Technology of Welding and Joining, 2000,5 (6) : 365.
  • 4Kong Junhua, Zhen Lin, Guo Bin et al. Influence of Mo Content on Microstructure and Mechanical Properties of High Strength Pipeline Steel[J].Materials and Design,2004,25 (8):723.
  • 5Sbanmugam S, Ramisetti N K, Misra R D K. Microstrueture and High Strength-Toughness Combination of a New 700 MPa Nb-Microalloyed Pipeline Steel[J]. Materials Science and Engineering A, 2008,478(112) : 26.
  • 6Luxenburger G, Bockelmann M, Wolf P, High Strength Quenched and Tempered (Q-t-T) Steels for Pressure Vessels [J]. Pressure Vessels and Piping,2004,81(2):159.
  • 7Keenhan E, Karlsson L. New Developments With C-Mn-Ni High-Strength Steel Weld Metals, Part A-Microstructure [J]. Welding Journal,2006,85(9):200s.
  • 8Deb P, Challenger K D, Therrien A E. Structure-Property Correlation of Submerged-Arc and Gas-Metal-Arc Weldments in HY-100 Steel [J]. Metallurgical Transactions A, 1987,18(6) :987.
  • 9Fleck N A, Grong O, Edwards G R, et al. The Role of Filler Metal Wire and Flux Composition in Submerged Arc Weld Metal Transformation Kinetics[J]. Welding Journal, 1986,65 (5):113s.
  • 10Sampath K, Green R S, Civis D A, et al. Metallurgical Model Speeds Development of GMA Welding Wire for HSLA Steel [J].Welding Journal, 1995,74(12) : 69.

二级参考文献4

共引文献40

同被引文献5

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部