期刊文献+

具有时变区间参数的不确定随机线性系统的均方鲁棒稳定性 被引量:1

MEAN-SQUARE ROBUST STABILITY OF UNCERTAIN STOCHASTIC LINEAR SYSTEMS WITH TIME-VARYING INTERVAL PARAMETERS
原文传递
导出
摘要 研究了一类具有时变区间参数的不确定随机线性系统的均方鲁棒稳定性.利用时变区间矩阵的分解技术、矩阵的Kronecker积的性质和Lyapunov函数法,得到了该系统均方鲁棒稳定的几个充分性条件.通过一个数值例子说明了所得的这些充分性条件的有效性和实用性. The mean-square robust stability for a class of uncertain stochastic linear systems with time-varying interval parameters is studied in this paper. Applying the decomposition technique of time-varying interval matrix, the property of Kronecker product of matrixand the Lyapunov function, several simple sufficient conditions are obtained to ensure the meansquare robust stability of time-varying interval stochastic linear systems. A numerical example shows the conciseness and effectiveness of the presented results.
出处 《系统科学与数学》 CSCD 北大核心 2010年第3期289-295,共7页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(70473037) 河南省自然科学基金(0611054400)资助项目
关键词 随机系统 均方鲁棒稳定性 时变区间矩阵 Stochastic systems, mean-square robust stability, time-varying interval matrix.
  • 相关文献

参考文献1

二级参考文献22

  • 1Basak, G.K. Bisi, A. and Ghosh, M.K. Stability of a random diffusion with linear drift, J. Math.Anal. Appl., 202(1996), 604-622.
  • 2Benjelloun K,Boukas, E.K. and Yang, H. Robust stabilizability of Uncertain linear time-delay systems with Markovian jumping parameters, J. Dyn. Syst. Meas. Contr, 118(1996), 776-786.
  • 3Boukas, E.K. and Yang, H. Robust stability nonlinear piecewise deterministic systems under matching conditions, 13^th world congress international federation of automatic control, 1996, July, 1-5.
  • 4Costa, O.L.V. and Fragoso, M.D., Stability results for discretetime linear systems with Markovian jumping parameters, J. Math. Anal. Appl,179(1993), 154-178.
  • 5Feng, X, A.Loparo, K, Ji, Y. and Chizeck, H.J. Stochastic stability properties of jump linear systems, IEEE Trans. Automat. Contr,37(1992), 38-53.
  • 6Has'minskii, R.Z. Stochastic Stability of Differential Equations, Sijthoff and Noordhoff, 1981.
  • 7Khargonekar, P.P, Petersen, I.R. and Zhou, K. Robust stabilization of uncertain linear systems:quadratic stabilizability, and H∞ control theory, IEEE Trans. Automat. Contr, 35(3)(1990), 356-361.
  • 8Lien, C.H.New stability criterion for a class of uncertain nonlinear neutral time delay systems, Int.J. Syst.Sci, 32(2)(2001), 215-219.
  • 9Mariton, M. Ahnost sure and moments stability of jump linear systems, Syst. Contr. Lett, 11(1988),393 397.
  • 10Mao, X., Stability of Stochastic Differential Equations with Respect to Semi-martingales, Longman Scientific and Technical, 1991.

共引文献4

同被引文献18

  • 1王守相,郑志杰,王成山.计及不确定性的电力系统时域仿真的区间算法[J].中国电机工程学报,2007,27(7):40-44. 被引量:23
  • 2马知恩,周义仓.常微分方程定性与稳定性方法[M].北京:科学出版社,2005.
  • 3王松桂.矩阵不等式[M].北京:科学出版社.2006:33-36.
  • 4Gautam D, ViRal V, Harbour T. Impact of increased penetration of DFIG-based wind turbine generators on transient and small signal stability of power systems [J]. IEEE Trans. on Power Systems, 2009, 24(3): 1426-1434.
  • 5Freitas W, Morelato A, Xu W. Improvement of induction generator stability using'braking resistors[J]. IEEE Trans.on Power Systems, 2004, 19(2): 1247-1249.
  • 6Causebrook A, Atkinson D J, Jack A G. Fault ride- through of large wind farms using series dynamic braking resistors[J]. IEEE Trans. on Power Systems, 2007, 22(3): 966-975.
  • 7Zertek A, Verbic G, Pantos M. Optimized control approach for frequency-control contribution of variable speed wind turbines[J] . IET Renewable Power Generation, 2012, 6(1): 17-23.
  • 8Kang Li, Shi Libao, Ni Yixin, et al. Small signal stability analysis with penetration of grid-connected wind farm of PMSG type[C]//The International Conference on Advanced Power System Automation and Protection. Beijing: Tsinghua University and Chinese Society for Electrical Engineering (CSEE), 2011: 147-151.
  • 9Yang L, Yang GY, Xu Z, et al. Optimal controller design of a doubly-fed induction generator wind turbine system for small signal stability enhancement[J]. IET Generation, Transmission and Distribution , 2010, 4(5): 579-597.
  • 10Liao X X, Mao X. Exponential stability of stochastic delay interval systems[J]. IEEE System and Control Letters, 2000, 40(11): 171-181.

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部