期刊文献+

一维p-拉普拉斯四点边值问题拟对称正解的多重性 被引量:2

MULTIPLICITY OF POSITIVE PSEUDO-SYMMETRIC SOLUTIONS FOR A FOUR-POINT BOUNDARY VELUE PROBLEM WITH A ONE-DIMENSIONAL p-LAPLACIAN
原文传递
导出
摘要 应用凸锥上的一个不动点定理,讨论了一类一维p-拉普拉斯四点边值问题在非线性项f依赖于未知函数的一阶导数的情况下拟对称正解的多重性,得到了这类边值问题存在多个拟对称正解的充分条件. In this paper, by using a fixed point theorem on convex cone, the four-point boundary value problem is considered for p-Laplace equations with the nonlinear term depending on the first order derivative, some multiplicity results of the positive pseudo-symmetric solutions are obtained.
出处 《系统科学与数学》 CSCD 北大核心 2010年第3期349-357,共9页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金重点项目(10531050) 国家自然科学基金创新团队项目资助 湖南省教育厅科研项目(08C826) 湖南省重点建设学科项目 湖南省高校科技创新团队计划资助 科技部973(2006CB805903)项目资助
关键词 p-拉普拉斯算子 四点边值问题 拟对称正解 p-Laplacian, four-point boundary value porblem, positive pseudo-symmetric solution, cone.
  • 相关文献

参考文献1

二级参考文献14

  • 1Agarwal R P, O'Regan D, Wong P J Y: Positive Solutions of Differential, Difference,and Integral Equations, Boston: Kluwer Academic, 1999.
  • 2O'Regan D. Some general existence principles and results for (φ(y)')' = qf(t, y, y')), 0 < t < 1, SIAM J Math Appl, 1993, 24: 648-668.
  • 3Bai C Z, Fang J X. Existence of multiple positive solutions for nonlinear m-point boundary value problems, Appl Math Comput, 2003, 140: 297-305.
  • 4Wang Y Y, Hou C M. Existence of multiple positive solutions for one-dimensional p-Laplacian, J Math Anal Appl, 2006, 315: 144-153.
  • 5Ji D H, Ge W G. Existence of multiple positive solutions for Sturm-Liouville-like four,point boundary value problem with p-Laplacian, Nonlinear Anal, doi:10.1016/j.na.2007.02.010, in press.
  • 6Liu B. Positive solutions of three-point boundary value problems for one-dimensional p-Laplacian with infinitely many singularities, Appl Math Lett, 2004, 17: 655-661.
  • 7He X M. Double positive solutions for a three-point boundary value problem for one-dimensional p-Laplacian, Appl Math Lett; 2004, 17: 867-873.
  • 8Li J L, Shen J H. Existence of three positive solutions for boundary value problems with p- Laplacian, J Math Anal Appl, 2005, 311: 457-465.
  • 9Avery R I, Henderson J. Existence of three positive pseudo-symmetric solutions for a one-dimensional p-Laplacian, J Math Anal Appl, 2003, 277: 395-404.
  • 10Su H, Wei Z L, Xu F Y. The Existence of positive solutions for nonlinear singular boundary value problem with a p-Laplacian, Appl Math Comput, 2006, 181: 826-836.

共引文献9

同被引文献17

  • 1郭彦平,葛渭高,董士杰.具有变号非线性项的二阶三点边值问题的两个正解[J].应用数学学报,2004,27(3):522-529. 被引量:27
  • 2WANG Jun-yu. The existence of positive solutions for the one-dimensional p -Laplacian[J]. Proceedings of the American Mathematical Society,1997,125(8):2 275- 2 283.
  • 3GUO Yan-ping,GE Wet gao. Three positive solutions for the one-dimentional p - Laplacian[J]. J Math Anal Appl,21303,286:491 508.
  • 4ZHANG B,LIU X. Existence of multiple symmetric positive solutions of higher order Lidstone problems[J]. J Math Anal Appt,2003, 284:672-689.
  • 5A R. P. Agarwal et. al, Eigenvalues and the one-dimensional p- Laplacian, J. Math. Anal. Appl. 266 2002:383-400.
  • 6R. P. Agarwal, D. O'Regan, Twin solutions to singular Dirichlet problems, J. Math. Anal. Appl. 240 1999:433-445.
  • 7J. Wang,W. Gao, A singular boundary value problem for the one- dimensional p-Laplacian, J. Math. Anal. Appl. 201 1996:851-866.
  • 8Z. Bai, Y. Wang, W. Ge, Triple positive solutions for a class of two-point boundary-value problems, Electron. J. Differenti- al Equations 06 2004:1-8.
  • 9D. Jiang, Multiple positive solutions for boundary value prob- lem of second-order delay differential equations, Appl. Math. Lett. 15 2002;575-583.
  • 10Z t3ai, Z. Gui, W. Ge, Multiple positive solutions for some p- Laplacian boundary value problens, J. Math. Anal Appk 300 2004: 477-490.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部