期刊文献+

梯度向量流的各向异性扩散分析 被引量:3

Anisotropic Diffusion Analysis of Gradient Vector Flow
下载PDF
导出
摘要 为了解决梯度向量流力场(gradient vector flow,简称GVF)难以进入目标凹部的问题,提出了一种新的主动轮廓模型外力场——各向异性梯度向量流.GVF的扩散项是各向同性且光滑性强的拉普拉斯算子,它在各个方向的扩散速度相同.拉普拉斯算子根据图像的局部结构可分为沿边界法线和切线方向的扩散,沿切线方向的扩散具有增强边界的作用,而法线方向扩散具有去除噪音、扩散力场的作用.基于分析二者在扩散过程中的作用,提出了一种各向异性梯度向量流扩散方法,切线和法线方向的扩散速度可以根据图像的局部结构自适应地选择.实验结果表明,与GVF相比,所提出的方法考虑了扩散过程中法线和切线方向的不同作用,能够进入细长的凹部,并改进了分割结果. A new external force field for active contour model, called anisotropic gradient vector flow, is presented to solve the problem that gradient vector flow (GVF) is difficult to enter the indentation. The diffusion term of GVF is the isotropic and highly smooth Laplacian operator with the same diffusion speed along tangent and normal directions. The diffusion of Laplacian operator is actually decomposed into the tangent and normal directions by the local image structures. Diffusion along the tangent direction enhances the edge, while diffusion along the normal direction removes noise and propagates the force field. This paper develops an anisotropic gradient vector flow based on the analysis of diffusion process of GVF along tangent and normal directions. In the proposed method, the diffusion speeds along the normal and tangent directions are adaptively obtained by the local structure of the image. The experimental results show that compared with GVF, the proposed method considering these two diffusion actions can enter long, thin indentation and improve the segmentation.
出处 《软件学报》 EI CSCD 北大核心 2010年第4期612-619,共8页 Journal of Software
基金 国家自然科学基金Nos.60532060 60775020 60805016 高等学校学科创新引智计划No.B08038 中国博士后基金No.20080430201 中央高校基本科研业务费专项资金No.QN2009091~~
关键词 梯度向量流 各向异性扩散 拉普拉斯算子 主动轮廓模型 图像分割 gradient vector flow anisotropic diffusion Laplacian operator active contour model imagesegmentation
  • 相关文献

参考文献2

二级参考文献32

  • 1屈颖歌,周涛,王平安,夏德深.基于支持向量机的核磁共振左心室图像自动检测与分割[J].武汉大学学报(理学版),2003,49(6):769-774. 被引量:5
  • 2周则明,陈强,王平安,夏德深.结合模糊C均值聚类和曲线演化的心脏MRI图像分割[J].系统仿真学报,2005,17(1):129-133. 被引量:12
  • 3陈强,周则明,屈颖歌,王平安,夏德深.左心室核磁共振图像的自动分割[J].计算机学报,2005,28(6):991-999. 被引量:9
  • 4Kass M., Witkin A., Terzopoulos D.. Snakes: Active contour models. International Journal of Computer Vision, 1988, 1(4): 321~331
  • 5Cohen L.D.. On active contour models and balloons. CVGIP: Image Understanding, 1991, 53(2): 211~218
  • 6Cohen L.D., Cohen I.. Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(11): 1131~1147
  • 7Xu Chen-Yang, Prince Jerry L.. Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing, 1998, 7(3): 359~369
  • 8Marr D., Hildreth E.C.. Theory of edge detection. In: Proceedings of Royal Society, London, 1980, Series B, 207:187~217
  • 9Canny J.F.. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679~698
  • 10Duncan J S,Ayache N.Medical image analysis:Progress over two decades and the challenges ahead.IEEE TPAMI,2000,22(1):181-204

共引文献41

同被引文献44

  • 1侯志强,韩崇昭.基于力场分析的主动轮廓模型[J].计算机学报,2004,27(6):743-749. 被引量:20
  • 2Oliver C, Quegan S. Understanding synthetic aperture radar images[M]. Boston: Artech House, 1998.
  • 3Kass M. Witkin A, Terzopoulos D. Snakes.. Active contour models [J]. International Journal of Computer Vision. 1988. 1(4): 321-331.
  • 4De Vylder J, Philips W. A computational efficient external energy for active contour segmentation using edge propagation [C]//Proceedings of 2010 17th IEEE International Piscataway: Conference on Image Processing IEEE Press, 2010:661-664.
  • 5Vasilevskiy A, Siddiqi K. Flux-maximizing geometric flows [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 2,4 (12) : 1 565-1 578.
  • 6Chamli M A, Mezghich M A, M'Hiria Set al. Geometric shape prior to region-based active contours using Fourier-based shape alignment EC3// 2010 IEEE International Conference on Imaging Systems and Techniques. Piseataway: IEEE Press, 2010: 478- 481.
  • 7Mumford D, Shah J. Oprimal approximation by piecewise smooth function and associated variational problems [J]. Communication on Pure and Applied Malhemafics, 1989, 45(5): 577-685.
  • 8Chan T, Vese L. Active eonlour without edges [J].IEEE Transactions on Image Processing, 2001, 10(2) : 266-277.
  • 9Ayed I B, Mitiche A, Belhadj Z. Multiregion level-set partitioning of synthetic aperture radar images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 793-800.
  • 10Silveira M, Heleno S. Separation between water and land in SAR images using region-based level sets[J]. IEEE Geoseience and Remote Sensing Letters, 2009, 6(3) : 471-475.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部