期刊文献+

缓存敏感的封闭冰山立方体计算 被引量:4

Cache-Conscious Computation of Closed Iceberg Cubes
下载PDF
导出
摘要 数据立方体计算通常会产生大量的输出结果,冰山立方体和封闭立方体是解决这个问题的比较流行的两种策略,二者可以结合使用.鉴于封闭冰山立方体(closed iceberg cube)的重要性和实用性,如何高效地计算封闭冰山立方体是一个值得研究的问题.提出一种缓存敏感(cache-conscious)的计算封闭冰山立方体的方法,在自底向上对数据进行聚集的同时,寻找覆盖聚集单元的封闭单元,将其输出,使用两种策略进行剪枝,去掉不必要的递归,同时使用Apriori剪枝技术,支持冰山立方体(iceberg cube)的计算.为了减少与内存相关的延迟,快速得到聚集结果,对多个维进行预排序,并将软件预取技术引入到数据扫描中.在模拟数据和真实数据上进行了详细而全面的实验研究,结果表明,封闭冰山立方体的计算方法是快速、有效的. The computation of data cubes this problem: Iceberg cube and closed cube, usually produces huge outputs. There which can be combined together. Due are two popular methods to solve to the importance and usability of closed iceberg cube, how to efficiently compute it becomes a key research issue. A cache-conscious computation method is proposed in this paper. The data are aggregated in a bottom-up manner. In the meantime, the closed cells covering the aggregate cells are discovered and output. Two pruning strategies are used to save unnecessary recursive calls. The Apriori pruning is utilized to support iceberg cube computation. To reduce the number of memory-related stalls and produce the aggregate results efficiently, multiple dimensions are pre-sorted and the software prefetching technology is introduced into data scans. A comprehensive and detailed performance study is conducted on both synthetic data and real data sets. The results show that the proposed closed iceberg cube computation method is efficient and effective.
出处 《软件学报》 EI CSCD 北大核心 2010年第4期620-631,共12页 Journal of Software
基金 国家自然科学基金Nos.60496325 60873017 惠普中国实验室资助项目~~
关键词 联机分析处理 封闭冰山立方体 缓存敏感 内存相关延迟 OLAP (on-line analytical processing) closed iceberg cube cache-conscious memory-related stalls
  • 相关文献

参考文献1

二级参考文献16

  • 1Boncz P, Zukowski M, Nes N. MonetDB/X100: Hyper-Pipelining query execution. In: Proc. of the CIDR. 2005.
  • 2Ailamaki A, DeWitt DJ, Hill MD, Wood DA. DBMSs on a modem processor: Where does time go? In: Proc. of the 25th Int'l Conf. on Very Large Data Bases. 1999.266-277.
  • 3Thakkar SS, Sweiger M. Performance of an OLTP application on symmetry multiprocessor system. In: Proc. of the 17th Annual Int'l Syrup. on Computer Architecture. Washington, 1990. 228-238.
  • 4Maynard AMG, Donnelly CM, Olszewski BR. Contrasting characteristics and cache performance of technical and multi-user commercial workloads. In: Proc. of the 6th Int'l Conf. on Architectural Support for Programming Languages and Operating Systems. San Jose, 1994. 145-156.
  • 5Rosenblum M, Bugnion E, Herrod SA, Witchel E, Gupta A. The impact of architectural trends on operating system performance. In: Proc. of the 15th ACM Symp. on Operating Systems Principles. Copper Mountain, 1995. 285-298.
  • 6Eickemeyer RJ, Johnson RE, Kunkel SR, Squillante MS, Liu S. Evaluation of multithreaded uniprocessors for commercial application environments. In: Proc. of the 23rd Annual Int'l Symp. on Computer Architecture. Philadelphia: 1996. 203-212.
  • 7Keeton K, Patterson DA, He YQ, Raphael RC, Baker WE. Performance characterization of a quad Pentium Pro SMP using OLTP workloads. In: Proc. of the 25th Annual Int'l Symp. on Computer Architecture. Barcelona, 1998. 15-26.
  • 8Trancoso P, Larriba-Pey JL, Zhang Z, Torrellas J. The memory performance of DSS commercial workloads in shared-memory multiprocessors. In: Proc. of the 3rd IEEE Symp. on High-Performance Computer Architecture. 1997.250.
  • 9Barroso LA, Gharachorloo K, Bugnion E. Memory system characterization of commercial workloads. In: Proc. of the 25th Annual Int'l Symp. on Computer Aarchitecture. Barcelona, 1998.3-14.
  • 10Manegold S. The calibrator (v0.9e), a cache-memory and TLB calibration tool. 2004. http://monetdb.cwi.nl/Calibrator/

共引文献9

同被引文献49

  • 1冷芳玲,鲍玉斌,于戈,高伟.基于MapReduce的封闭数据立方[J].计算机研究与发展,2011,48(S3):232-238. 被引量:4
  • 2夏芳,陈虹,曹立强,沈卫超.利用位图索引加速大规模科学数据按需访问[J].计算机研究与发展,2011,48(S1):94-99. 被引量:4
  • 3李盛恩,王珊.封闭数据立方体技术研究[J].软件学报,2004,15(8):1165-1171. 被引量:25
  • 4刘运涛,鲍玉斌,吴丹,冷芳玲,孙焕良,于戈.CBFrag-Cubing:一种基于压缩位图的高维数据立方创建算法[J].计算机科学,2005,32(11):91-93. 被引量:2
  • 5Xin Dong.Star-Cubing:computing iceberg cubes by top-down and bottom-up integration[C]//Proc of the 29th Intl Conf on Very Large Data Bases,Berlin,Germany,2003.
  • 6Dong Xin,Han Jiawei.Computing iceberg cubes by top-down and bottom-up integration: the starcubing approach[J]~IEEE Transac- tions on Knowledge and Data Engineering, 2007,19 ( 1 ) : 111-126.
  • 7Dong Xin, Zheng Shao, Hart Jiawei, et al.C-cubing: efficient com- putation of closed cubes by aggregation-based checking[C]//Proc of the 22rid ]nil Conf on Data Engineering,Atlanta,Georgia, USA, 2006.
  • 8Wang W.Condensed cube: an efficient approach to reducing data cube size[C]//Proc of the 18th IEEE Intl Conf on Data Engi-neering, San Jose, California,USA, 2002.
  • 9Feng Jianlin, Si Hongjie, Feng Yucai.Indexing and incremental updating condensed data cube[C]//Proc of the 15th Intl Conf on Scientific and Statistical Database Management, Cambridge,MA, USA, 2003.
  • 10Feng Jianlin, Fang Qiong, Ding Hulin.PrefixCube: prefix-sharing condensed data cube[C]//Proc of ACM 7th Intl Workshop on Da- tawarehouse and OLAP,Washington DC,USA,2004.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部