期刊文献+

快速统一挖掘超团模式和极大超团模式 被引量:3

Fast Unified Mining of Hyperclique Patterns and Maximal Hyperclique Patterns
下载PDF
导出
摘要 超团模式是一种新型的关联模式,这种模式所包含的项目相互间具有很高的亲密度.超团模式中某个项目在事务中的出现很强地暗示了模式中其他项目也会相应地出现.极大超团模式是一组超团模式更加紧凑的表示,可被用于多种应用.挖掘这两种模式的标准算法是完全不同的.提出一种基于FP-tree(frequent pattern tree)的快速挖掘算法——混合超团模式增长(hybrid hyperclique pattern growth,简称HHCP-growth),统一了两种模式的挖掘.算法采用递归挖掘方法,并应用多种有效的剪枝策略.提出并证明几个相关命题来说明剪枝策略的有效性和算法的正确性.实验结果表明,HHCP-growth算法相对于标准的超团模式挖掘算法和极大超团模式挖掘算法都具有更高的效率,尤其对于大数据集或在低支持度条件下更为显著. The hyperclique pattern is a new type of association pattern, in which items are highly affiliated with each other. The presence of an item in one transaction strongly implies the presence of every other item in the same hyperclique pattern. The maximal hyperclique pattern is a more compact representation of a group of hyperclique patterns, which is desirable for many applications. The standard algorithms mining the two kinds of patterns are different. This paper presents a fast algorithm called hybrid hyperclique pattern growth (HHCP-growth) based on FP-tree (frequent pattern tree), which unifies the mining processes of the two patterns. This algorithm adopts recursive mining method and exploits many efficient pruning proved to indicate the effectiveness of the strategies and the strategies. Some propositions are also presented and validity of the algorithm. The experimental results show that HHCP-growth is more effective than the standard hyperclique pattern and maximal hyperclique pattern mining algorithms, particularly for large-scale datasets or at low levels of support.
出处 《软件学报》 EI CSCD 北大核心 2010年第4期659-671,共13页 Journal of Software
基金 国家高技术研究发展计划(863)No.2007AA01Z417 高等学校学科创新引智计划No.B08004~~
关键词 关联规则 超团模式 极大超团模式 数据挖掘:频繁模式树 association rule hyperclique pattem maximal hyperclique pattern data mining FP-tree (frequentpattern tree)
  • 相关文献

参考文献1

二级参考文献7

  • 1陈安龙,唐常杰,陶宏才,元昌安,谢方军.基于极大团和FP-Tree的挖掘关联规则的改进算法[J].软件学报,2004,15(8):1198-1207. 被引量:30
  • 2Agrawal R.Mining association rules between sets of items in large databases[C]∥Proceedings of the 1993 ACM SIGMOD Conference.Washington,D C:[s.n.],1993:207-216.
  • 3Hatonen K.Knowledge discovery from telecommunication network alarm databases[C]∥ICDE'96.New Orleans:[s.n.],1996:115-122.
  • 4Han Jiawei.Mining frequent patterns without candidate generation[C]∥Proceedings of the 2000 ACM SIGMOD.Dallas:[s.n.],2000:1-12.
  • 5Vilalta Ricardo,Ma Sheng,Hellerstein Joseph.Rule induction of computer events[C]∥Proceedings of the 12th IFIP/IEEE DSOM'2001.Nancy France:[s.n.],2001:225-235.
  • 6Antunes C,Oliveira A L.Inference of sequential association rules guided by context free grammars[C]∥ Proc Int'Conf on Grammatical Inference.Amsterdam:[s.n.],2002:1-13.
  • 7刘康平,李增智.网络告警序列中的频繁情景规则挖掘算法[J].小型微型计算机系统,2003,24(5):891-894. 被引量:9

共引文献14

同被引文献24

  • 1徐前方,肖波,郭军.一种基于相关度统计的告警关联规则挖掘算法[J].北京邮电大学学报,2007,30(1):66-70. 被引量:15
  • 2吉根林,韦素云.分布式环境下约束性关联规则的快速挖掘[J].小型微型计算机系统,2007,28(5):882-885. 被引量:7
  • 3Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large database[C]//Proc of 1993 ACMSIGMOD Conf on Management of Data.New York:ACM Press,1993:207-216.
  • 4Agrawal R,Srikant R.Fast algorithms for mining association rules[C]//Proc of 1994 Int'1 Conf on Very Large DataBases(VLDB'94).San Francisco:Morgan Kaufman,1994:478-499.
  • 5Han J,Pei J,Yin Y.Mining frequent patterns without candidate generation[C]//the 2000 ACM-SIGMOD,Dallas,TX,2000.
  • 6Xiong H,Tan P N,Kumar V.Mining strong affinity association patterns in data sets with skewed support distribution[C]/Wu X D,Tuzhilin A,Shavlik J.Proc of the ICDM.Melbonrne:IEEE Computer Society,2003:387-394.
  • 7Xiong H,Tan P N,Kumar V.Hyperclique pattern discovery[J].Data Mining and Knowledge Discovery Journal,2006,13(2):219-242.
  • 8Huang Y C,Xiong H,Wu W L,et al.Mining maximal hyperclique pattrern:a hybrid search strategy[J].Information Sciences,2007,177(3):703-721.
  • 9陈文伟.基于本体的可拓知识链获取[J].智能系统学报,2007,2(6):68-71. 被引量:13
  • 10杨春燕,蔡文.挖掘同对象信息元的传导知识[J].智能系统学报,2008,3(4):305-308. 被引量:8

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部