期刊文献+

ANN model of subdivision error based on genetic algorithm

ANN model of subdivision error based on genetic algorithm
下载PDF
导出
摘要 According to the test data of subdivision errors in the measuring cycle of angular measuring system, the characteristics of subdivision errors generated by this system are analyzed. It is found that the subdivision errors are mainly due to the rotary-type inductosyn itself. For the characteristic of cyclical change, the subdivision errors in other measuring cycles can be compensated by the subdivision error model in one measuring cycle. Using the measured error data as training samples, combining GA and BP algorithm, an ANN model of subdivision error is designed. Simulation results indicate that GA reduces the uncertainty in the training process of the ANN model, and enhances the generalization of the model. Compared with the error model based on the least-mean-squared method, the designed ANN model of subdivision errors can achieve higher compensating precision. According to the test data of subdivision errors in the measuring cycle of angular measuring system, the characteristics of subdivision errors generated by this system are analyzed. It is found that the subdivision errors are mainly due to the rotary-type inductosyn itself. For the characteristic of cyclical change, the subdivision errors in other measuring cycles can be compensated by the subdivision error model in one measuring cycle. Using the measured error data as training samples, combining GA and BP algorithm, an ANN model of subdivision error is designed. Simulation results indicate that GA reduces the uncertainty in the training process of the ANN model, and enhances the generalization of the model. Compared with the error model based on the least-mean-squared method, the designed ANN model of subdivision errors can achieve higher compensating
出处 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第1期131-136,共6页 哈尔滨工业大学学报(英文版)
关键词 genetic algorithm artificial neural network (ANN) subdivision error angular measuring system error model 人工神经网络模型 细分误差 误差模型 遗传算法 旋转式感应同步器 测量周期 测量系统 模型设计
  • 相关文献

参考文献3

二级参考文献14

  • 1姜苇,李刚,虞启琏,林凌,刘理,谢国明.新型高共模抑制比生理电信号前置放大器设计的研究[J].仪器仪表学报,2003,24(z1):184-186. 被引量:14
  • 2曾庆双,刘升才.一种双通道测角系统的设计[J].中国惯性技术学报,1996,4(2):40-44. 被引量:11
  • 3陈敬泉,尔联洁,刘正华,吴云洁.基于感应同步器的高速高精度位置测量技术[J].北京航空航天大学学报,2005,31(4):447-450. 被引量:17
  • 4谭建成.电机控制专用集成电路[M].北京:机械工业出版社,2002..
  • 5ZIMMERMAN R. Resolvers as velocity and position encoding devices[ J]. Motor-Con Proceeings, 1985 (10) :96 - 110.
  • 6YIM CH H. A resolver-to-digital converter method for fast Tracking[J]. IEEE Trans Ind Electron, 1992,39 (5) :369 -377.
  • 7HANSELMAN D C. Reslover signal requirements for high accuracy reslover-to-digital conversion [ J ]. IEEE Trans Ind Electron, 1990,37(6) :556 -561.
  • 8WILLIAMSON D. Signal processing techniques for improved resolver - to - digtal conversion accuracy [ A ].IECON'90[ C]. 1990.
  • 9曾庆双,中国惯性技术学报,1996年,4卷,2期,87页
  • 10陆永平 芩文远.感应同步器及其系统[M].北京:国防工业出版社,1982..

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部