期刊文献+

特征权重优化高分辨率遥感影像模糊分类研究 被引量:2

The Research on Weight Optimization in Multi-feature Fuzzy Classification of High Resolution Remote Sensing Image
下载PDF
导出
摘要 在针对SPOT5等高分辨率遥感影像的面向对象模糊分类过程中,一般对影像对象的特征赋予相同的权重。为了体现不同特征对分类作用的差异,本文在分类时根据特征的重要与否,对参与分类的特征赋予不同的权重,提高重要的、区分度好的特征的权重,降低次要特征的权重。以北京市昌平区的SPOT5影像为例,利用多特征模糊分类和经过权重优化的多特征模糊分类进行分类对比实验。实验结果表明,经过特征权重优化的分类与权重相同的分类结果相比,分类总精度由原来的86.3%提高到了92.6%,Kappa系数由原来的0.8096提高到了0.8947。结果表明,经过权重优化的多特征模糊分类有助于提高模糊分类法的分类精度和适用性。 In the process of fuzzy classification of high resolution remote sensing image,people are used to give the same weight to all image objects' features.This paper attempts to raise the weight of important features and to bring down the weight of subordinate features in the image classification.We classify SPOT5 image data of Changping area in Beijing using two methods in order to see the contrast.One method is traditional multi-feature fuzzy classification and the other is the method that has been weight optimized.Compared with the first method,the second method obtained better results.The total classification precision increased from 86.3% to 92.6% and the Kappa coefficient raised from 0.8096 to 0.8947.The results show that weight optimization in multi-feature fuzzy classification contributes to improve the accuracy and applicability of multi-feature fuzzy classification.
出处 《遥感信息》 CSCD 2010年第1期94-98,共5页 Remote Sensing Information
基金 国家863项目"面向地块的地物类型精细识别技术及其应用"(2007AA12Z181)
关键词 面向对象 模糊分类 SPOT5 多特征 权重 object-oriented fuzzy classification SPOT-5 multi-feature weight
  • 相关文献

参考文献8

二级参考文献63

共引文献434

同被引文献21

  • 1赵春霞,钱乐祥.遥感影像监督分类与非监督分类的比较[J].河南大学学报(自然科学版),2004,34(3):90-93. 被引量:87
  • 2王翠香.模糊集合的模糊度的一种表示形式[J].数学的实践与认识,2006,36(2):267-269. 被引量:9
  • 3孙家捅.遥感原理与应用[M].武汉:武汉大学出版社,2009.
  • 4Peter F.Fisher. Remote Sensing of Land Cover Classes as Type 2 Fuzzy Sets [J]. Remote Sensing of Environment, 2010, 114: 309-321.
  • 5Andrew J T, Hugh G L, Peter M A, et al. Super-resolution Target Identify-cation from Remotely Sensed Images using a Hopfield Neural Network [J].IEEE Transactions on Geoscience and Re- mote Sensing, 2001,39 (4):781-796.
  • 6Hamid R, Tizoosh. Image Thresholding using Type II Fuzzy Sets [J].Pattem Recognition, 2005 (38):2 363-2 372.
  • 7Tang X M, Kainz W, Fang Y. Reasoning about Changes of Land Covers with Fuzzy Settings[J]. International Joumal of Remote Sensing, 2005,26 (14):3 025-3 046.
  • 8Tseng M H, Chen S J, Hwang G H, et al. A Genetic Algorithm- rule-based Approach for Land-cover Classification [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2008,63 (2): 202 -212.
  • 9Wu G, Zheng C. Fuzzy Boundary and Characteristic Properties of Order-homomorphi-sms[J]. Fuzzy Sets and Systems, 1991,39 (3): 329-337.
  • 10陈晨,张友静.基于多尺度纹理和光谱信息的SVM分类研究[J].测绘科学,2009,34(1):29-31. 被引量:16

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部