期刊文献+

兔角膜基质飞秒激光扫描后Ki-67、转化生长因子β2及平滑肌肌动蛋白的表达 被引量:3

The expression of Ki-67, TGF-β2 and α-SMA after the femtosecond laser-assisted intrastromal scanning in rabbit cornea
原文传递
导出
摘要 目的研究角膜基质飞秒激光扫描后Ki-67、转化生长因子β2及平滑肌肌动蛋白(α-SMA)的表达情况,探讨角膜基质内扫描后角膜创伤愈合反应机制。方法20只纯种新西兰大白兔随机编号,35只眼用60kHzIntralase飞秒激光进行角膜基质内扫描(其中5只兔只做右眼),未手术的5只左眼作为正常对照组。激光参数为:点/线间距10μm,扫描直径8.5mm,扫描能量1.3μJ,扫描深度为135μm,不进行角膜边缘切削。术后在30min、1h,2h、1个月和3个月用裂隙灯显微镜观察角膜的透明程度。分别在术后1d.3d、1周、1个月和3个月各取6只术眼的角膜组织,做免疫印迹法蛋白定量检查,各时间点取1只术眼做免疫组织化学检查,分别观察Ki-67、TGF-β2及α-SMA的表达情况。用两组完全随机化设计资料均数的t检验进行统计学处理。结果免疫印迹法蛋白定量及免疫组织化学检查显示:Ki-67在基质扫描后第1天开始表达增加(0.0670±0.0008),扫描后3d达最高峰(0.6923±0.0051),随着时间推移其表达逐渐减少,但直至术后3个月和对照组相比差异均有统计学意义(t=24.12,57.22,43.26,39.78,18.35;P〈0.05)。TGF-β2(t=0.933,0.856,0.934,0.970,1.132)及OL-SMA(t=1.126,1.235,0.993,1.175,1.211)在术后各时间点的表达和对照组相比差异均无统计学意义(P〉0.05)。结论角膜基质内飞秒激光扫描后Ki-67表达增加,角膜基质细胞活化、增殖;TGF—β2被完整的角膜上皮所屏障,活化和增生的角膜基质细胞没有向肌成纤维母细胞转化,损伤修复愈合过程中无haze形成。 Objective To study how the cornea would express Ki-67, TGF-β2 and α-SMA and how the cornea would heal when it is scanned intrastromally. Methods Twenty New Zealand white rabbits were randomly numbered and used for the experiments. The 60 kHz Intralase femtosecond laser delivery system was used to scan 35 rabbit corneas (of these corneas, 5 right corneas were from 5 rabbits). The unoperated 5 left eyes were used as control. The laser settings were: spot/line separation, 10 μm; diameter, 8.5 mm; energy for scanning the stroma, 1.3 p J; scanning depth, 135 μm, no edge cuts were performed. Slit lamp was used to observe the cornea at 0. 5 h, 1 h, 2 h, and 3 months after surgery. On day 1, 3, 7, 30, 90 after surgery, 6 and 1 scanned corneas at each time point were taken for Western blot and immunocytochemical detection respectively to detect the expression of TNF-α, Ki-67, TGF-132 and α-SMA. Results Microbubbles were found in corneal stroma after surgery. The number of microbubbles tended to decrease significantly with time. At 2 h, the cornea turned to be transparent again. During 3-month follow- up, the cornea was always transparent and no haze appeared. Western blot analysis and immunocytochemical detection demonstrated that the expression of Ki-67 began to increase at day 1 ( 0. 0670 + 0. 0008 ) and reached the peak at day 3 after surgery(0. 6923 +0. 005). While there were significant difference with the control group at day 90 after surgery ( t = 24. 12,57.22,43.26, 39. 78, 18.35 ; P 〈 0. 05 ), a gradual decrease in expression of ki-67 could be detected from day 3 to 90. There were no significant change in the expression of TGF-132 ( t = 0. 933,0. 856,0. 934,0. 970, 1. 132 ) and α-SMA ( t = 1. 126, 1. 235,0. 993, 1. 175,1.211 ) at all time points after surgery (P 〉 0. 05 ). Conclusions After intrastromal scanning, the expression of Ki-67 increases and the keratocyte is activated and proliferated. However, due to no epithelium injured and TGF-β2 confined to the epithelium, the activated and proliferated keratocytes could not be transformed into myofibroblasts.
出处 《中华眼科杂志》 CAS CSCD 北大核心 2010年第3期214-220,共7页 Chinese Journal of Ophthalmology
基金 国家自然科学基金(30530770) 教育部新世纪优秀人才计划(NCET-07-0212) 复旦大学博士创新基金(EYF158017)
关键词 角膜外科手术 激光 屈光外科手术 伤口愈合 KI-67抗原 转化生长因子Β2 肌动蛋白质类 Corneal surgery,laser Refractive surgical procedure Wound healing Ki-67 antigen Transforming growth
  • 相关文献

参考文献17

  • 1Imanishi J. Expression of cytokines in bacterial and viral infections and their biochemical aspects. J Biochem ( Tokyo), 2000, 127 : 525-530.
  • 2Netto MV, Mohan RR, Ambrosio R, et al. Wound healing in the cornea A review of refractive surgery complications and new prospects for therapy. Cornea, 2005, 24:509-522.
  • 3Ratkay-Traub I, Ferincz IE, Juhasz T, et al. First clinical results with the fem?oseeond neodymium-glass laser in refractive surgery. J Refract Surg, 2003, 19:94-103.
  • 4Wilson SE, Mohan RR, Ambrosio R, et al. The corneal wound healing response : cytokine-mediated interaction of the epithelium, stroma, and inflammatory cells. Prog Retin Eye Res, 2001, 20: 625 -637.
  • 5Ye HQ, Maeda M, Yu FS, et al. Differential expression of MT1- MMP (MMP-14) and collagenase Ⅲ ( MMP-13 ) genes in normal and wounded rat corneas. Invest Ophthalmol Vis Sci, 2000, 41 : 2894-2899.
  • 6Zieske JD, Guimaraes SR, Hutcheon AE. Kinetics of keratocyte proliferation in response to epithelial debridement. Exp Eye Res, 2001, 72:33-39.
  • 7Jester JV, Ho-Chang J. Modulation of cultured corneal keratocyte phenotype by growth factors/cytokines control in vitro contractility and extracellular matrix contraction. Exp Eye Res, 2003,77:581- 592.
  • 8Zieske JD, Hutcheon AE, Guo X, et al. TGF-beta receptor types I and II are differentially expressed during corneal epithelial wound repair. Invest Ophthalmol Vis Sci, 2001,42 : 1465-1467.
  • 9Folger PA, Zekaria D, Grotendorst G, et al. Transforming growth factorbeta-stimulated connective tissue growth factor expression duringcomeal myofibroblast differentiation. Invest Ophthalmol Vis Sci, 2001,42:2534-2541.
  • 10Mar PK, Roy P, Yin HL, et al. Stress fiber formation is required for matrix reorganization in a corneal myofibroblast cell line. Exp Eye Res, 2001,72:455-466.

同被引文献37

  • 1Salomao MQ, Wilson SE. Femtosecond laser in laser in situ keratomileusis. J Cataract Refract Surg, 2010, 36: 1024-1032.
  • 2Lubatschowski H. Overview of commercially available femtosecond lasers in refractive surgery. J Refract Surg, 2008, 24: S102-107.
  • 3Lee YC, Wang U, Hu FR, et al. Immunohistochemical study of subepihelial haze after phototherapeutic keratectomy. J Refract Surg, 2001, 17: 334-341.
  • 4Wilson SE, He YG, Weng J, et al. Epithelial injury induces keratocyte apoptosis : hypothesized role for the interleukiu-1 system in the modulation of corneal tissue organization and wound healing. Exp Eye Res, 1996, 62: 325-327.
  • 5Ingo S, Daniel GD, Bernard EM, et al. Cohesive tensile strength of human LASIK wounds with histologic, uhrastructural, and clinical correlations. J Refract Surg, 2005, 21 : 433-445.
  • 6Rocha KM, Kagan R, Smith SD, et al. Thresholds for interface haze formation after thin-flap femtosecond laser in situ keratomileusis for myopia. Am J Ophthalmol, 2009, 147: 966-972.
  • 7Netto MV, Mohan RR, Medeiros FW, et al. Femtosecond laser and microkeratome corneal flaps: comparison of stromal wound healing and inflammation. J Refract Surg, 2007, 23 : 667-676.
  • 8Kim JY, Kim M J, Kim TI, et al. A femtosecond laser creates a stronger flap than a mechanical microkeratome. Invest Ophthalmol Vis Sci, 2006, 47: 599-604.
  • 9Javaloy J, Vidal MT, Abdelrahman AM, et al. Confocal microscopy comparison of intraLase femtosecond laser and Moria M2 mierokeratome in LASIK. J Refract Surg, 2007, 23 : 178-187.
  • 10Chang JS. Complications of sub-Bowman' s keratomileusis with a femtosecond laser in 3009 eyes. J Refract Surg, 2008, 24: S97- 101.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部