期刊文献+

80keV N离子注入对ZnO薄膜结构的影响 被引量:1

Effects of 80 keV N-ion Implantation on Structures of ZnO Films
原文传递
导出
摘要 室温下用80keVN离子注入ZnO薄膜样品,注量分别为5.01014,5.01015和5.01016ions/cm2,然后用X射线衍射和透射电镜技术对样品的结构特性进行了表征。实验结果表明,由高度(002)择优取向的致密柱状晶构成的薄膜中,注入5.0×1015ions/cm2时,观测到缺陷生成和局域无序化现象,但薄膜总体结构仍保持柱状晶和(002)择优取向;随着注量的增大,晶格常数c和压应力呈增大趋势。对注入N离子对ZnO薄膜结构特性的影响机理进行了简单的讨论。 ZnO thin films were implanted at the room temperature by 80 keV N-ions to 5.0×10^14,5.0×10^15 or 5.0×10^16 ions/cm^2,the structural characteristics of the samples were investigated using X-ray diffraction(XRD) spectrometer and transmission electron microscopy(TEM).It was found that the un-implanted ZnO films are constituted of columnar crystals which are very compact and of preferred c-axis orientation.After N-ion implantation,the crystal lattice constant and the biaxial compressive stress increased with the increasing of the N-implantation dose.In the 5.0×10^16 N-ions/cm^2 implanted ZnO sample,a new XRD peak due to defects or N-dopants appeared.Moreover,defects and localized disordering in the 5.0×10^15 N-ions/cm^2 implanted ZnO films have been observed under high resolution TEM measurement.However,N-ion implantation could not change significantly the crystal structure of the ZnO films.Possible mechanism of the structural modification of ZnO films by N-ion implantation was briefly discussed.
出处 《原子核物理评论》 CAS CSCD 北大核心 2010年第1期87-91,共5页 Nuclear Physics Review
基金 中国科学院知识创新方向性项目(KJCX2-YW-M11) 国家自然科学基金资助项目(10835010)~~
关键词 ZNO薄膜 N离子注入 X射线衍射 透射电镜 ZnO films N-implantation XRD TEM
  • 相关文献

参考文献17

  • 1Ozgur U, Alivov Ya I, Liu C, et al. Journal of Applied Physics, 2005, 98: 041301.
  • 2Pearton S J, Norton D P, Ip K, et al. Progress in Materials Science, 2005, 50: 293.
  • 3Kohan A F, Ceder G, Morgan D, etal. Phys Rev, 2000, B61 (22): 15019.
  • 4Ryu Y, Lubguban J A, Lee T S, et al. Appl Phys Lett, 2007, 90: 131115.
  • 5Xu W Z, Ye Z Z, Zeng Y J, et al. Appl Phys Lett, 2006, 88: 173506.
  • 6Liu W, Gu S L, Ye J D, et al. Appl Phys Lett, 2006, 88: 092101.
  • 7Yungryel Ryu, Tae-Seok Lee, Jorge A L, et al. Appl Phys Leer, 2006, 88: 241108.
  • 8Park C H, Zhang S B, Wei S H, Phys Rev, 2002, B66: 073202.
  • 9Georgobiania A N, Gruzintsev A N, Volkov V T, etal. Nucl Instr and Meth, 2003, A514:117.
  • 10Wang Kun, Ding Zhibo, Chen Tianxiang, et al. Nucl Instr and Meth, 2008, B266: 2962.

同被引文献19

  • 1BRUEL M. Nucl Instr and Meth B, 1996, 108(3): 313.
  • 2TONG Q Y, GOSELE U M. Adv Mater, 1999, 11(17): 1409.
  • 3RADU I, SZAFRANIAK I, SCHOLZ R, et al. Ferroelectfic Thin Films Xi[M]. USA: Materials Research Society, 2003: 337-342.
  • 4LIU W, ZHAN D, MAX. J Vac Sci Technol B, 2008, 26(1): 206.
  • 5SIMPSON T W, MITC HE LL I V, ESTE G O, et al. Nucl Instr and Meth B, 1999, 148(4): 381.
  • 6TERREAULT B. Phys Status Solidi A, 2007, 204(7): 2129.
  • 7HARTMANN M, TRINKAUS H. Phys Rev Lett, 2002, 88(5) 055505.
  • 8KLING A, da SILVA M F, SOARES J C, et al. Nucl Instr and Meth B, 2001, 175: 394.
  • 9OFAN A, GAATHON O, ZHANG L, et al. Phys Rev B, 2011, 83(6): 064104.
  • 10OFAN A, GAATHON O, ZHANG L, et al. Phys Rev B, 2010, 82(10): 104113.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部