期刊文献+

基于双重特征的协议识别方法 被引量:1

The Methods of Protocol Identification Based on Double Characteristic
下载PDF
导出
摘要 随着Internet技术的发展,网络应用服务越来越丰富多彩。为了对目前互联网中的流量实施有效监控,需要使用协议识别技术,因此,协议识别方法已成为研究热点。然而随着网络协议的复杂化,一些传统的协议识别方法已经不能够准确地识别协议。主要介绍基于数据包Payload特征的识别方法与基于流量特征的SVM识别方法,并提出一种将两者结合的协议识别方案。 With the development of Internet, there are more and more Jnternet application. In order to take effective way to monitor the flow rate of Internet, the identification technology of protocol is required, so the methods of protocol identification become research hotspot. But with the complexity of Internet protocol , some traditional methods of protocol can' t identify the protocol correctly . This thesis proposes the method of protocol identification based on the data package' s Payload and the method of identification based on the flow rate' s SVM, it proposes a new method to identify protocol with the combination of that two methods last.
出处 《计算机安全》 2010年第3期6-7,19,共3页 Network & Computer Security
关键词 协议识别 PAYLOAD 网络流量 SVM Protocol identification payload Network Traffic SVM
  • 相关文献

参考文献2

二级参考文献12

  • 1李雪莹,刘宝旭,许榕生.字符串匹配技术研究[J].计算机工程,2004,30(22):24-26. 被引量:26
  • 2O.R.Zaiane and J.Luo.Towards evaluating leamers'behaviour in a Web-based distance learning environment[ R].Proc.IEEE International Conference on Advanced Learning Technologies (ICALT2001).Madison,WI,USA,6~8 August 2001
  • 3Osmar R.Zaiane,Man Xin and Jiawei Han.Discovering Web Access patterns and trends by applying OLAP and Data Mining technology on Web Logs[J].ADL,1998:19-29
  • 4Robert Cooley,Bamshad Mobasher and Jaideep Srivastava.Data Preparation for Mining World Wide Web Browsing Patterns[J].Journal of Knowledge and Information System.1:5-32,1999
  • 5爱德华·华尔兹 总参谋部第四部编译.信息战原理与作战行动[M].北京:解放军出版社,2000..
  • 6李雄伟.网络对抗系统及其关键技术研究[R].北京:北京邮电大学博士后出站报告,2005-10.
  • 7Reed K D.协议分析[M].北京:电子工业出版社,2002.
  • 8Knuth D E,Morris JrJH,Prath V R.Fast pattern matching in strings[J].SIAMJ.Computer,1977,6(1):323-350.
  • 9Boyer R S,Moore J S.A fast string searching algorithm[J].Commun ACM,1977,20(10):762-772.
  • 10陈莉,焦李成.Internet/Web数据挖掘研究现状及最新进展[J].西安电子科技大学学报,2001,28(1):114-119. 被引量:77

共引文献11

同被引文献15

  • 1Moore A,Zuev D. Internet Traffic Classification Using Bayesian Analysis[C]//Proc of ACM SIGMETRICS'05, 2005 : 50-60.
  • 2Karagiannis T, Papagiannaki D, Faloutsos M. BLINC: Mul tilevel Traffic Classification in the Dark[C]//Proc of ACM SIGCOMM'05, 2005:229-240.
  • 3Baset A, Schulzrinne H. An Analysis of the Skype Peer-to- Peer Internel Telephony Protocol [R]. Technical Report CUCS-039 04,Columbia University, 2004.
  • 4McGregor A, Hall M, I.orier P, et al. Flow Clustering Using Machine Learning Techniques[C]//Proc of PAM' 04, 2004 : 205-214.
  • 5Dempster A P, Paird N M, Rubin D B. Maximum Likeli hood from Incomplete Data via the EM Algorithm[J]. Jour hal of the Royal Statistical Society, 1977,39(1) : 1-38.
  • 6Duffield N,Lund C. Predicting Resource Usage and Estima tion Accuracy in an IP Flow Measurement Collection Infra- strueture[C]//Proc of ACM Internet Measurement Conference, 2003:85-96.
  • 7Erman J, Arlitt M, Mahanti A. Traffic Classification Using Clustering Algorithms[C]//Proc of ACM SIGCOMM ' 06, 2006.
  • 8Bernaille L, Teixeira R, Akodkenou I, et al. Traffic Classi fication on the Fly[J]. ACM SIGCOMM Computer Com- munication Review, 2006,36(2) :23- 26.
  • 9MacQueen J. Some Methods for Classification and Analysis of Multivariate Observations[C]//Proc of the Fifth Berke- ley Symposium on Mathematical Statistics and Probability,1967:281- 297.
  • 10Arthur D, Vassilvitskii S. K-means+ + : The Advantages of Careful Seeding[C]//Proc of SODA' 07, 2007:1027 1035.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部