期刊文献+

一类具有常数输入率的有差异的两子群间的SIRS模型(英文) 被引量:1

An SIRS Model with Constant Immigration Rate Between Two Discrepant Subgroups
下载PDF
导出
摘要 建立并分析了一类总人口变动的包含具有差异性两子群的单种群的SIRS传染病模型.当基本再生率R0≤1时,系统仅存在无病平衡点,且它是全局渐近稳定的.当R0>1时,存在唯一的地方病平衡点,并且它存在即局部渐近稳定.通过Lyapunov函数法建立了地方病平衡点全局渐近稳定的充分条件. An SIRS epidemiological model for a single species population with varying size and two discrepant subgroups is formulated and analyzed. If the basic reproduction rate R0≤1, only the disease-free equilibrium exists, which proves to be globally asymptotically stable. There exists a unique endemic equilibrium if R0〉1 and it is locally asymptotically stable whenever it exists. Sufficient conditions are obtained for global asymptotic stability of the endemic equilibrium via the method of Lyapunov functions.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第3期1-9,共9页 Journal of Southwest University(Natural Science Edition)
基金 教育部科学技术研究重点项目(109132) 教育部留学回国人员科研启动基金项目(教外司留[2008]890号).
关键词 SIRS模型 子种群 Krasnoselskill技巧 LYAPUNOV函数 全局渐近稳定性 SIRS model subgroup Krasnoselskii trick Lyapunov function global asymptotic stability
  • 相关文献

参考文献10

  • 1Lajmanovich A, Yorke J A. A Deterministic Model for Gonorrhea in a Nonhomogeneous Population [ J]. Math Biosci, 1976, 28(3-4): 221- 236.
  • 2Hethcote H W, Thieme H R. Stability of the Endemic Equilibrium in Epidemic Models with Subpopulations [J]. Math Biosci, 1985, 75(2): 205-227.
  • 3Hyman J, LI Jia. An Intuitive Formulation for the Reproductive Number for the Spread of Diseases in Heterogeneous Populations [J]. Math Biosci, 2000, 167(1): 65-86.
  • 4LI Jia, MA Zhien, Blythe S P, et al. Coexistence of Pathogens in Sexually-Transmitted Disease Models [J]. J Math Biol, 2003, 47(6): 547-568.
  • 5Jaime Mena Lorca, Hethcote H W. Dynamic Models of Infectious Diseases as Regulators of Population Sizes [J]. J Math Biol, 1992, 30(7): 693- 716.
  • 6Diekmann O, Heesterbeek J A P, Metz J A J. On the Definition and the Computation of the Basic Reproduction RatioR0 in Models for Infectious Diseases in Heterogeneous Populations [J]. Math Biol, 1990, 28(4): 365- 382.
  • 7Van Den Driessche, Watmough J. Reproduction Numbers and Sub Threshold Endemic Equilibria for Compartmental Models of Disease Transmission [J]. Math Biosci, 2002, 180(1 -2): 29- 48.
  • 8HAN Litao, MA Zhien, SHI Tan. An SIRS Epidemic Model of Two Competitive Species [J]. Mathematical and Com puter Modelling, 2003, 37(1): 87- 108.
  • 9郑芳,刘贤宁,袁媛.未感染概率为一般函数的离散S-I-R模型(英文)[J].西南大学学报(自然科学版),2008,30(2):20-25. 被引量:4
  • 10袁媛,刘贤宁,郑芳.具有一般比率依赖功能性反应的阶段结构捕食系统性态分析(英文)[J].西南大学学报(自然科学版),2007,29(12):6-11. 被引量:7

二级参考文献12

  • 1[1]Arditi R,Ginzburg L R.Coupling in Predator-Prey Dynamics:Ratio-Dependent[J].J Theor Biol,1989,139:311-326.
  • 2[2]Xu Rui,Chaplain M A J,Davidson F A.Persistence and Global Stability of a Ratio-Dependent Predator-Prey Model with Stage Structure[J].Appl Math Comput,2004,158:729-744.
  • 3[3]Christian Jost.About Deterministic Extinction in Ratio-dependent Predator-Prey Models[J].Bull Math Biol,1999,61:19-32.
  • 4[4]Thieme H R.Convergence Results and a Poincare-Bendixson Trichotomy for Asymptotically Differential Equations[J].J Math Biol,1992,30:755-763.
  • 5[5]Hale J K,Waltman P.Persistence in Infinite-Dimensional Systems[J].SIAM J Math Anal,1989,20:388-395.
  • 6[1]Innocenzo A D,Paladini F,Renna L.A Umerical Investigation of Discrete Oscillating Epidemic Models[J].Physica A,2006,364:497-512.
  • 7[2]Linda J S,Allen.Some Discrete-Time SI,SIR,and SIS Epidemic Models[J].Math Biosci,1994,124:83-105.
  • 8[6]Carlos Castillo-Chavez,Abdul-Aziz Yakubu.Discrete-Time S-I-S Model with Complex Dynamics[J].Nonlinear Analysis,2001,47:4753-4762.
  • 9[7]Li Xiuyin.A Discrete Epidemic Model with Stage Structure[J].Chaos,Solitons & Fractals,2005,26:947-958.
  • 10[8]Hofbauer J,So J W H.Uniform Persistence and Repellors for Maps[J].Proc Am Math Soc,1989,107:1137-1142.

共引文献9

同被引文献10

  • 1BRAUER F, DRIESSCHE P. Models for Transmission of Disease with Immigration of Infectives[J]. Math Biosei, 2001, 171(2): 143--154.
  • 2WANG Wen-di, MULONE G. Threshold of Disease Transmission in a Patch Environment [J]. J Math Anal Appl, 2003, 285(1): 321--335.
  • 3ARINO J, DRIESSCHE P. A Multi-city Epicemic Model [J]. Math Popul Stud, 2003, 10(3) : 175--193.
  • 4WANG Wen-di, ZHAO Xiao-qiang. An Epidemic Model in a Patchy Environment [J]. Math Biosei, 2004, 190(1) : 97--112.
  • 5CUI Jin-an, TAKEUCHI Y. Spreading Disease with Transport-related Infection [J]. J Theor Biol, 2006, 239(3): 376--390.
  • 6LIU Xian-ning, TAKEUCHI Y. Spread of Disease with Transport-related Infection and Entry Screening [J]. J Theor Bi- ol, 2006, 242(2): 517--528.
  • 7TAKEUCHI Y, LIU Xian-ning. Global Dynamics of SIS Models with Transport-related Infection [J]. J Math Anal Ap- pl, 2007, 329(2): 1460--1471.
  • 8LIU Jun-li, ZHOU Yi-cang. Global Stability of an SIRS Epidemic Model with Transport-related Infection [J]. Chaos, Solitons and Fractals, 2009, 40(1): 145--158.
  • 9WANGZhi-ping LIUXian-ning.DynamicsofaTri-trophicModelinPatchEnviroment.西南大学学报自然科学版,2007,:1-5.
  • 10刘俊,王稳地,石超.具有两种免疫来源的乙肝病毒模型的全局动力学(英文)[J].西南大学学报(自然科学版),2010,32(1):5-10. 被引量:3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部