摘要
建立并分析了一类总人口变动的包含具有差异性两子群的单种群的SIRS传染病模型.当基本再生率R0≤1时,系统仅存在无病平衡点,且它是全局渐近稳定的.当R0>1时,存在唯一的地方病平衡点,并且它存在即局部渐近稳定.通过Lyapunov函数法建立了地方病平衡点全局渐近稳定的充分条件.
An SIRS epidemiological model for a single species population with varying size and two discrepant subgroups is formulated and analyzed. If the basic reproduction rate R0≤1, only the disease-free equilibrium exists, which proves to be globally asymptotically stable. There exists a unique endemic equilibrium if R0〉1 and it is locally asymptotically stable whenever it exists. Sufficient conditions are obtained for global asymptotic stability of the endemic equilibrium via the method of Lyapunov functions.
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第3期1-9,共9页
Journal of Southwest University(Natural Science Edition)
基金
教育部科学技术研究重点项目(109132)
教育部留学回国人员科研启动基金项目(教外司留[2008]890号).