期刊文献+

Aspergillus niger CU-1菌株在水相中深层发酵生产高含量异麦芽低聚糖的研究 被引量:1

Produce Isomaltooligosaccharides with High Concentration by Submerged Fermentation of Aspergillus niger CU-1
下载PDF
导出
摘要 对实验室选育的Aspergillus niger CU-1菌株在最佳培养条件下菌体生长与产酶的关系进行测定,在最佳培养条件下,72h生物量达到最大值,88h左右α-葡萄糖转苷酶活力达到最高点,溶液pH5.0有利于α-葡萄糖转苷酶稳定积累;将A.niger CU-1按照10%接种量接入25%木薯淀粉和3%麸皮的转苷反应培养基中,在30℃、160r/min下培养3.0d,定时取样检测pH、还原糖、总糖、菌体干重、异麦芽低聚糖(IMO)含量,绘制发酵过程曲线。产物经过HPLC分析,表明主要的有效组分是异麦芽糖、潘糖、异麦芽三糖和异麦芽四糖,还有明显的聚合度为5和6的低聚糖,异麦芽低聚糖含量≥80%,葡萄糖含量约4%。结果表明,高浓度底物和长时间发酵策略,适合于Aspergillus niger CU-1的发酵生产高含量异麦芽低聚糖。 In this paper, Aspergillus niger CU-1 was found to produce maximum amount of α-glucosidase at 88 h while to peak its biomass at 72 h under the best conditions. The pH value of 5.0 was helpful to pile up α-glucosidase. The inoculum of A. niger CU-1 was 10% in a medium contained 25% (w/v) of cassava starch and 3% (w/v) of wheat bran. Then transglucosylation performed for 3.0 d at 160 r/rain and 30℃. The pH, reduced sugar, total sugar, biomass (dry weight) , and isomahooligosaccharides (IMOs) were tested. HPLC analysis showed the amount of effective IMOs was higher than 80% , including isomaltose, panose, isomaltotriose, isomahotetraose, and oligosaccharides with polymerization of 5 or 6. The glucose was about 4%. These results showed that a long period of fermentation with high concentration of substrate was suitable for producing IMOs by A. niger CU-1.
出处 《食品与发酵工业》 CAS CSCD 北大核心 2010年第3期36-39,共4页 Food and Fermentation Industries
基金 国家高技术研究发展计划(863计划)资助(No.2006AA10Z339)
关键词 黑曲霉 Α-葡萄糖苷酶 异麦芽低聚糖 发酵 工艺调控 Aspergillus niger, α-glucosidase,isomahooligosaccharide, fermentation,process control
  • 相关文献

参考文献12

  • 1Roberfroid M, Slavin J. Nondigestible oligosaccharides [J]. Critical Reviews in Food Science and Nutrition, 2000, 40:461 -480.
  • 2Mussatto S I, Mancilha I M. Non-digestible oligosaccharides: A review [ J]. Carbohydrate Polymers, 2007, 68 (3): 587-597.
  • 3Crittenden R G, Playne M J. Production, properties and applications of food-grade oligosaccharides[ J]. Trends in Food Science & Technology, 1996, 7:353 -361.
  • 4Voragen A G J. Technological aspects of functional foodrelated carbohydrates [ J ]. Trends in Food Science & Technology, 1998, 9 : 328 - 335.
  • 5Sako T, Matsumoto K, Tanaka R. Recent progress on research and applications of non-digestible galacto-oligosaccharides[ J ]. International Dairy, 1999, 9 : 69 - 80.
  • 6Crittenden R G, Playne M J. Purification of food-grade oligosaccharides using immobilized cells of Zymomonas mobilis[ J]. Applied Microbiology and Biotechnology, 2002, 58 : 297 - 302.
  • 7Okada M, Nakayama T, Noguchi A, et al. Site-specific mutagenesis at positions 272 and 273 of the Bacillus sp SAM1606 α-glucosidase to screen mutants with altered specificity for oligosaccharide production by transglucosylation[J]. JMolCatal B: Enzym, 2002, 16:265 -274.
  • 8Ernst B, Hart GW, Sinay P. Carbohydrates in chemistry and biology [ M ]. Wiley, Weinheim : Wiley,2000,723 - 838.
  • 9Maitin V, Rastall R A. Enzyme glycation influences product yields during oligosaccharide synthesis by reverse hydrolysis[ J]. Journal of Molecular Catalysis B: Enzymatic, 2004, 30:195 -202.
  • 10Boon M A, Janssen A E M, Riet K. Effect of temperature and enzyme origin on the enzymatic synthesis of oligosaccharides[ J]. Enzyme and Microbial Technology, 2000, 26:271 -281.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部