摘要
将K均值聚类和v-SVM结合,推出一种改进的分类方法。该方法根据指标的相关性,构建了具有强分辨能力的分类模型,并将模型应用于内蒙某地勘查地球化学研究,查明了所研究元素之间的相似性,建立了v-SVM分类机,实现了组合异常的圈定。
The combination of K-means clustering and v-SVM gives a improved classified method which built a classified model with strong ability to distinguish based on the correlation.The model is applied in the exploration geochemical research in some places of Inner Mongolia,it which made clear in the similarity among the studied elements,and established v-SVM classifier to realize the delineation of combination anomaly.
出处
《世界地质》
CAS
CSCD
2010年第1期78-82,共5页
World Geology
基金
全国金银矿产资源潜力评价及汇总项目(1212010633901)
关键词
支持向量机
K均值聚类
组合异常
support vector machine
K-means clustering
combination anomaly