期刊文献+

K-连通图的无符号Laplace谱半径 被引量:2

Spectral Radius of Signless Laplacian of k-connectivity Graphs
下载PDF
导出
摘要 设G是一简单图,K(G)是图G的无符号Laplace矩阵,K(G)的谱称为G的无符号Laplace谱。本文描述一类给定点连通度或边连通度图的无符号Laplace谱半径。 Let G be a simple graph and K(G) the signless Laplacian of G. The spectral of K(G) is the spectral of signless Laplacian of G. In this paper, we characterize the spectral radius of signless Laplacian of graphs with given vertex connectivity or edge connectivity.
出处 《安庆师范学院学报(自然科学版)》 2010年第1期3-4,共2页 Journal of Anqing Teachers College(Natural Science Edition)
关键词 谱半径 点连通度 边连通度 graph, the spectral radius, vertex connectivity ,edge connectivity
  • 相关文献

参考文献2

  • 1Miao-Lin Ye,Yi-Zheng Fan, DongLiang. The least eigenvalue of graphs with given connectivity[J]. Linear Algebra and its Applications ,2009 (430): 1 375-1 379.
  • 2Dragos Cvetkovie, Peter Rowlinson Slobodan K. Simie. Signless Laplacians of finite graphs[J]. Linear Algebra and its Applications, 2007 (423) :155-171.

同被引文献11

  • 1Das K.C..A characterization on graphs which achieve the upper bound for the largest laplacian eigenvalue of graphs[J].Linear Algebra Apple.,2004(376):170-186.
  • 2Das K.C.,An improved upper bound for Laplacian graph eigenvalues[J].Linear Algebra Appl.,2003(368):269-278.
  • 3J.M Guo.A New upper for the laplaciaen spectral Algebra and its Applications[J].2005(400):61-66.
  • 4Xiao-nong Huang.The Degree Sequence of a Graph and Its Laplacian Spectral Radius[J].Journal of Hebei Normal University:Natural Science Edition,2002,26(6):561-563.
  • 5Huai-Juan Xu.An Mproved Upper Bound on Laplacian Spectral Radius of Graphs[J].Journal of Huaiyin Teachers College:Natural Science Edition,2008,7(3):202-203.
  • 6Xiao-nong Huang.Some Inequalities Related to the Degree Sequence of a Graph[J].Journal of Mathematical Study,2009 (35):152-154.
  • 7J. A. Bondy, U. S. R. Murrty Graph Theory[ M ]. New York:The Macmillan press LTD, 1976.
  • 8Mimi Xu, Yuan Hong, Jinlong Shu, Mingqing Zhai. The minimum spectral radius of graphs with a given independence number[ J ]. Linear Algebra Appl. , 2009(431 ) :937.
  • 9D. M. evetkovic, M. sachss. Spectral of graphs[ M ]. thirded,Johan Smbrosius Barth Verlag, Heidelberg, 1995.
  • 10Wenshui Lin, Xiaofeng Guo. Ordering trees by their largest eigenvalues [ J ]. Linear Algebra Appl. , 2006 (418) :450 -456.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部