期刊文献+

LS-SVM技术在曳引机故障预测中的应用 被引量:6

The application of LS-SVM method in traction machine fault prediction
下载PDF
导出
摘要 利用支持向量机采用的结构风险最优化准则、预测能力强、鲁棒性好等优点,研究了最小二乘支持向量机(Least Squares Support Vector Machines,LS-SVM)回归算法在曳引机故障预测中的应用。提出了一种自动搜寻最优参数方法,对参数和进行寻优,避免了人工选择的盲目性,提高了算法的效率。通过将LS-SVM和RBF神经网络进行对比实验,得出在相同训练样本条件下,LS-SVM可以取得比RBF更好的预测精度和预测速度,更加适合于现场实际应用。最后将LS-SVM模型用于曳引机振动信号的时域分量预测中,预测的平均相对误差小于5%,取得了较高的预测精度。 Made use of the advantages of support vector machines that structural risk optimization criteria,strong predictability and good robust,it adopt Least Squares Support Vector Machines(LS-SVM )to research Traction Machine fault prediction. Considering the inefficiency of manual selection,we adopt searching optimal parameters automatically to find optimize parameter and. An contrast test has been made which proves LS-SVM can have a good performance with the same training samples and get a better result than RBF neural network in forecasting precision and speed. So it is suitable for the worksite application. Finally,this method is used to predict time field components of traction machine vibration signals and result shows that the average relative errors are all less than5%,which have an accurate result.
出处 《机械设计与制造》 北大核心 2010年第4期71-73,共3页 Machinery Design & Manufacture
基金 江苏省社会发展计划项目(BS2007083)
关键词 最小二乘支持向量机 故障预测 曳引机 自动搜寻最优参数方法 LS-SVM Fault prediction Traction machine Searching optimal parameters automatically
  • 相关文献

参考文献10

二级参考文献25

  • 1Vladimir N Vapnik 张学工(译).统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 2VapnikVN 张学工译.统计学到理论的本质[M].清华大学出版社,2000..
  • 3Vapnik V N. Statiscal learning theory[M]. John Viley & Sons, Inc. , N. Y. , 1998.
  • 4Weston J, Watkins C. Multi-class support vector machines[R]. Royal Holloway College. Tech Rep:CSD-TR-98-04,1998.
  • 5Kressel U. Pairwise classification and support vector machines[M]. In B. Scholkopf, ed. Advances in Kernel Methods Support Vector Learning, MIT Press, Cambrifge, Massachusetts, 1999, chapter 15, 255-268.
  • 6Platt J, Cristianini N, Shawe-Taylor J. Large margin DAGs for multiclass classification[M]. In.. Advances in Neural Information Processing Systems 12. Massachusetts: MIT Press, 2000.
  • 7Poyhonen S, Negrea M, Arkkio A, Hyotyniemi H, Koivo H. Suppor Vector Classification for Fault Diagnostics of an Electrical Machine[C]. Proc. of Int. Conf. On Signal processing (ICSP'02), Beijing-Chlna, August 26-30, 2002.
  • 8VN Vapnik. The nature of statistical learning theory [ M ].New York: Springer, 1995: 72~236.
  • 9Nello C, John S T. An introduction to support vector machines and other kernel - based learning methods [ M ].Cambridge: Cambridge University Press, 2000.
  • 10.

共引文献88

同被引文献42

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部