期刊文献+

具p:-q共振奇点的Hamiltonian系统的线性化

Linearizable conditions for Hamiltonian systems with p:-q resonant singular point
下载PDF
导出
摘要 研究了二次和三次齐次Hamiltonian系统的1:-2共振奇点的可线性化问题,并利用计算机代数系统求出原点作为鞍点的1:-2型系统可积性与可线性化的必要条件,得出系统可线性化的条件. In this article, Linearizable conditions for secondary and three homogeneous Hamihonian systems with 1 : -2 resonant singular point are studied. Then following the computer algebra system, the sufficient conditions are proved, namely we obtains all integrable conditions and linearzable conditions for the system.
出处 《商丘师范学院学报》 CAS 2010年第3期14-17,共4页 Journal of Shangqiu Normal University
基金 国家自然科学基金资助项目(10871206) 广西高校人才资助计划项目
关键词 Hamihonian系统:可积性 可线性 Hamiltonian system integrable conditions linearzable conditions
  • 相关文献

参考文献6

  • 1Liu Y, Huang W. A new method to determine isochronous center conditions for polynomial differential systems [ J ]. Bull. des Sci. Math. ,2003,127 : 133 - 148.
  • 2Wang W,Liu Y. Linearizability of the polynomial differential systems with a resonant singular point [ J ]. Bull. Sci. Math. , 2008,13:97 - 111.
  • 3Mardesic P , Moser - Jauslin L , Rousseau C. Darboux linearization and isochronous centers with a rational first integral [ J ]. J Differential Equations , 1997 , 134 (1) :216-268.
  • 4Christopher C J , Devlin J. Isochronous centers in planar polynomial systems [J ]. SIAM J Math. Anal , 1997 , 28 (2) : 162 - 177.
  • 5刘一戎,李继彬.论复自治微分系统的奇点量[J].中国科学(A辑),1989,20(3):245-255. 被引量:94
  • 6Gravel S, Thibault P. Integrability and linearizability of the Lotka - Volterra System with a saddle point with rational hyperbolicity ratio [ J ]. J. Diferential Equations, 2002,184:20 - 47.

二级参考文献1

  • 1蔡燧林.二次系统的细鞍点与分界线环[J]数学学报,1987(04).

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部