摘要
本文研究如下一类带有小参数的三阶非线性微分方程两点边值问题{εym=f(t,y,y′,y′′ε),a<t<b y(a)=A(ε) y′′(a)=C(ε)y(b)B(ε)的解的高阶渐近展开,并利用压缩映像原理,证明了解的存在性并得到了解的高阶误差估计.
This paper studies the higher-order expansion of the solution of a class of two point boundary value problems for third-order nonlinear differential equation with small parameter as following{εym=f(t,y,y′,y′′ε),atb y(a)=A(ε) y′′(a)=C(ε)y(b)B(ε) Then using Banach contraction mapping principle,proves the existence of solution and obtains the error estimate of the solution.
出处
《漳州师范学院学报(自然科学版)》
2010年第1期31-36,共6页
Journal of ZhangZhou Teachers College(Natural Science)
关键词
非线性微分方程
两点边值问题
高阶展开
nonlinear differential equation
two point boundary value problem
higher-order expansion