摘要
针对城市年用水量时间序列的非线性和多时间尺度特性,应用小波分析方法对年用水量时间序列的趋势性、周期性和随机性进行了分析。在此基础上,建立了用于城市用水量长期预测的小波神经网络耦合模型。并利用此模型对昆明市年用水量进行预测,预测结果表明,该模型应用于城市用水量的长期预测具有较高的预测精度和良好的推广能力。
According to the nonlinear and the multi-time scale character of the annual water consumption time series of urban, the method of wavelet analysis was used to analyze the tendency, periodicity and random of annual water consumption time series. Based on this, a long-term predicting wavelet neural network coupling model of urban water consumption was built, and used to predict the annual water consumption of Kunming. The result showed that this wavelet neural network predicting model had good quality in terms of prediction precision and generalization.
出处
《云南农业大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第2期272-276,共5页
Journal of Yunnan Agricultural University:Natural Science
基金
联合国人居署亚洲城市水资源计划项目(UN-WCDM07A05)
云南省高校学术带头人基金项目(07YN0012)
关键词
用水量预测
小波分析
神经网络
water consumption prediction
wavelet analysis
neural network