期刊文献+

动力吸振器的多目标优化和多属性决策研究(英文)

Study on Multi-objective Optimization and Multi-attribute Decision Making of Dynamic Vibration Absorber
下载PDF
导出
摘要 动力吸振器被广泛用于船舶、飞机和汽车等工业领域。在结构振动控制中,为了最大限度地发挥吸振器的耗能减振作用,需要寻找吸振器的最优参数,即最优频率比、最优阻尼比和最优质量比,使得结构在不同的频率激励下获得最好的减振效果。文章将基于进化算法的多目标优化技术与多属性决策方法联合运用,针对主系统存在阻尼的减振系统,研究了动力吸振器的优化和决策问题。对于多目标优化问题,采用改进的非支配解排序的多目标进化算法(NSGAII),求出Pareto最优解,由这些Pareto最优解构成决策矩阵,使用客观赋权的信息熵方法对最优解的属性进行权值计算,然后用逼近理想解的排序方法(TOPSIS)进行多属性决策(MADM)研究,对Pareto最优解给出排序。文中给出了4个设计参数、3个目标函数的动力吸振器优化设计算例。 Dynamic vibrations absorbers(DVAs) are widely used in ships,planes,automobiles and other engineering domains.DVAs are essentially mass-spring-damper appendages of a vibration system,which are capable of absorbing the vibration energy at the attachment point.This paper is focused on the optimization of DVA parameters.A hybrid approach for multi-objective optimization of DVA is proposed in the present analysis.In the first stage,a Non-dominated Sorting Genetic Algorithm Ⅱ(NSGA Ⅱ) is employed to approximate the set of Pareto solution through an evolutionary optimization process.In the subsequent stage,a multi-attribute decision making(MADM) approach is adopted to rank these solutions from best to worst and to determine the best solution in a deterministic environment with a single decision maker.A DVA example is conducted to illustrate the analysis process in the present study.Pareto frontiers are obtained and the ranking of Pareto solution is based on entropy weight and TOPSIS method.
作者 李学斌
出处 《船舶力学》 EI 北大核心 2010年第3期293-304,共12页 Journal of Ship Mechanics
关键词 动力吸振器 多目标遗传算法 多属性决策 TOPSIS(熵权重) DVA multi-objective genetic algorithm multi-attribute decision making entropy weights TOPSIS
  • 相关文献

参考文献25

  • 1Frahm H. Device for damping vibrations of bodies[P]. US. Patent 989,958, 1911.
  • 2Koronev B G, Reznikov L M. Dynamic vibration absorbers. Theoly and Technical Applications[M]. New York: Wiley and Sons, Ltd, 1993.
  • 3Sun J Q, Jolly M R, Norris M A. Passive, adaptive vibration absorbers- a survey[J]. Transactions of the ASME, 1995(17): 234-242.
  • 4Den Hartog J P. Mechanical Vibrations[M]. New York: McGraw-Hill, 1956.
  • 5Warburton G B. Optimum absorber parameters for various combinations of response and excitation parametelz[J]. Earthquake Engineering and Structural Dynamics, 1982(10): 381-401.
  • 6Warburton G B, Ayorinde E O. Optimum absorber parameters for simple systems[J]. Earthquake Engineering and Structural Dynamics, 1980 (8): 197-217.
  • 7Wang Y Z, Cheng S H. The optimal design of dynamic absorber in the time domain and the fi'equency domain[J]. Applied Acoustics, 1989(28): 67-78.
  • 8Nishimura It, Yoshida K, Shimogo T. Optimal dynamic vibration absorber for multi-degree-of-freedom systems (Theoretical consideration in the ease of random input)[J]. JSME International Journal, 1989(32): 373-379.
  • 9Kitis L, Wang B P, Pilkey W D. Vibration reduction over a fiequency range[J]. Journal of Sound and Vibration, 1983 (89): 559-569.
  • 10Bavastri C A, Espidndola J J, Teixeira P H. Hybrid algorithm to compute the optimal parameters of a system of viscoelastic vibration neutralizers in a frequency band[C]//Proceedings of the MOVIC '98. Zurich, Switzerland, 1998.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部