期刊文献+

Rotational and Vibrational State Distributions of CsH and Relative Reactivity in Reactions of Cs(6^2D,7^2D) with H2 被引量:1

Rotational and Vibrational State Distributions of CsH and Relative Reactivity in Reactions of Cs(6^2D,7^2D) with H2
下载PDF
导出
摘要 By using a pump-probe technique, the nascent rotational and vibrational state distributions of CsH are obtained in the Cs(6^2 D,7^2 D) plus H2 reaction. The nascent CsH molecules are found to populate the lowest two vibrational (v″ = 0 and 1) levels of the ground electronic state. By comparing the spectral intensities of the CsH action spectra with those of pertinent Cs atomic fluorescence excitation spectra, the relative reactivity with 1-12 is in an order of6^2D3/2 〉 6^2D5/2 〉 7^2D3/2 〉 7^2D5/2. The rotational temperatures are found to be slightly below the cell temperature. The relative fractions (〈fV〉, 〈fR〉, 〈fT〉) of average energy disposal are derived as (0.2,0.12,0.68), (0.2,0.12,0.68), (0.07,0.04,0.89) and (0.07,0.04,0.89) for the 6^2D3/2, 6^2D5/2, 7^2D3/2 and 7^2D5/2, respectively. The major available energy is released as translation. These results support that the reaction mechanism of Cs(6^2 D,7^2 D) plus 112 is primarily a eollinear abstraction and not an insertion. By using a pump-probe technique, the nascent rotational and vibrational state distributions of CsH are obtained in the Cs(6^2 D,7^2 D) plus H2 reaction. The nascent CsH molecules are found to populate the lowest two vibrational (v″ = 0 and 1) levels of the ground electronic state. By comparing the spectral intensities of the CsH action spectra with those of pertinent Cs atomic fluorescence excitation spectra, the relative reactivity with 1-12 is in an order of6^2D3/2 〉 6^2D5/2 〉 7^2D3/2 〉 7^2D5/2. The rotational temperatures are found to be slightly below the cell temperature. The relative fractions (〈fV〉, 〈fR〉, 〈fT〉) of average energy disposal are derived as (0.2,0.12,0.68), (0.2,0.12,0.68), (0.07,0.04,0.89) and (0.07,0.04,0.89) for the 6^2D3/2, 6^2D5/2, 7^2D3/2 and 7^2D5/2, respectively. The major available energy is released as translation. These results support that the reaction mechanism of Cs(6^2 D,7^2 D) plus 112 is primarily a eollinear abstraction and not an insertion.
机构地区 Department of Physics
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2010年第4期99-102,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grand No 10664003.
关键词 Atomic and molecular physics Chemical physics and physical chemistry Atomic and molecular physics Chemical physics and physical chemistry
  • 相关文献

共引文献108

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部