期刊文献+

环肽纳米管的应用研究 被引量:4

Applications of Cyclic Peptide Nanotubes
原文传递
导出
摘要 环肽分子通过主链骨架中C=O和N—H形成分子间网络氢键,以β-片层反平行方式堆积可形成中空管状结构。通过控制环肽的结构和尺寸,或修饰具有不同功能的基团,可获得多种结构和性能的肽纳米管。本文综述了环肽分子自组装成纳米管的应用研究成果。首先介绍了带合适疏水性侧链的环肽纳米管在模拟生物跨膜离子通道方面的实验和理论研究进展,重点论及环肽纳米管的结构、极性和侧链的疏水性等对离子通道传输行为的影响以及分子动力学(MD)模拟研究水通道的进展。进而介绍了环肽纳米管用作生物传感器模板,与功能性(如电性、光学性和磁性)纳米材料合成制备生物传感器的实验研究成果,接着介绍了环肽纳米管作为药物或药物载体潜在的应用前景,特别是在某些抗菌和抗感染药物开发设计中的应用以及环肽在不同极性环境中自组装过程微观机制的MD模拟研究,最后介绍了环肽纳米管作为模板,制备磁性、电性纳米材料方面的实验和理论研究进展。 Cyclopeptides,adopting β-sheet-like arrangements,can easily stack to form hollow tubular ensembles through the intermolecular hydrogen-bond network.A wide range of multi-structural and functional cyclopeptide nanotubes can be produced by changing the structures and numbers of peptide subunits employed or modifying with variant functional groups.Firstly,the present paper reviews the application progress of the experimental and theoretical researches of self-assembling cyclopeptide nanotubes mimicking biologic transmembrane channels,focusing on the influences of the structures,polarities and hydrophobic properties on the transportation properties and the progress of molecular dynamic(MD) simulations of cyclopeptide nanotubes as water transportation channels.Secondly,the experimental research advances of cyclopeptide nanotubes using as the templets to produce biosensors by synthesis with functional nanomaterials such as electronic,optical and magnetic ones are introduced.The following brings forth the potential application foregrounds of cyclopeptide nanotubes functionating as medicines or drug carriers,especially in developing antibacterial and anti-infectional drugs.Finally,the experimental and theoretical research progress of the applications of cyclopeptide nanotubes functionating as the templets to prepare magnetic and electronic nanomaterials is reviewed.
出处 《化学进展》 SCIE CAS CSCD 北大核心 2010年第4期648-653,共6页 Progress in Chemistry
关键词 环肽纳米管 跨膜离子通道 生物传感器 cyclopeptides nanotubes transmembrane ion channels biosensors
  • 相关文献

参考文献53

  • 1Ghadiri M R, Granja J R, Milligan R, et al. Nature, 1993, 366 : 324-327.
  • 2Hartgerink J D, Granja J R, Milllgan R A, et al. J. Am. Chem. Soc., 1996, 118(1): 43-50.
  • 3Seebach D, Matthews J L, Meden A, et al. Helvetica Chimica Acta, 1997, 80:173-182.
  • 4Clark T D, Buriak J M, Kobayashi K, et al. J. Am. Chem. Soc. , 1998, 120(35) : 8949-8962.
  • 5Ranganathan D, Lakshmi C, Karle I L, et al. J. Am. Chem. Soc. , 1999, 121(26) : 6103-6107.
  • 6Gauthier D, Baillargeon P, Drouin M, et al. Angew. Chem. Int. Ed. , 2001, 40(24) : 4635-4638.
  • 7Amorin M, Castedo L, Granja J R. J. Am. Chem. Soc., 2003, 125 (10) : 2844-2845.
  • 8Home W S, Stout C D, Ghadiri M R. J. Am. Chem. Soc. , 2003, 125(31) : 9372-9376.
  • 9Scanlon S, Aggeli A. Nano Today, 2008, 3(3/4): 22-30.
  • 10Brea R J, Vazquez M E, Mosquera M, et al. J. Am. Chem. Soc., 2007, 129(6): 1653-1657.

同被引文献193

  • 1张宗明,裘法祖.离子通道与疾病[J].世界华人消化杂志,2005,13(5):585-587. 被引量:21
  • 2Rajagopal K, Schneider J P. Curt. Opin. Struct. Biol., 2004, 14(4) : 480-486.
  • 3De la Rica R, Mendoza E, Lechuga L M, Matsui H. Angew. Chem. Int. Ed. , 2008, 47 (50) : 9752-9755.
  • 4Lee S Y, Gao X Y, Matsui H. J. Am. Chem. Soc.,2007, 129 (10) : 2954-2958.
  • 5Porrata P, Goun E, Matsui H. Chem. Mat. , 2002, 14(10) : 4378-4381.
  • 6Matsui H, Douberly G E. Langmuir, 2001, 17 (25): 7918- 7922.
  • 7Cui H G, Pashuck E T, Velichko Y S, Weigand S J, Cheetham A G, Newcomb C J, Stupp S I. Science, 2010, 327(5965) : 555-559.
  • 8Hartgerink J D, Beniash E, Stupp S I. Proc. Natl. Acad. Sci. USA, 2002, 99(8) : 5133-5138.
  • 9Silva G A, Czeisler C, Niece K L, Beniash E, Harrington D A, Kessler J A, Stupp S I. Science, 2004, 303 (5662) : 1352- 1355.
  • 10Hartgerink J D, Beniash E, Stupp S I. Science, 2001, 294 (5547) : 1684-1688.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部