期刊文献+

IC-PSO算法的收敛性分析及应用研究 被引量:4

Convergence Analysis of IC-PSO Algorithm and Its Application Research
下载PDF
导出
摘要 针对标准PSO算法后期迭代搜索效率不高,容易陷入局部最优的问题,提出将免疫克隆(IC)原理引入PSO算法中,把抗体视为粒子,根据亲和度的高低进行粒子克隆选择、克隆抑制和高频变异,提高了种群的多样性和全局搜索的能力。并将其应用于40Gb/s的传输系统中进行了DOP优化补偿实验,算法补偿所需时间约为71ms。通过对比补偿前后的信号眼图可以发现,PMD补偿后,信号眼图张开度有明显改善,证明了算法的有效性。 Considering that the standard (Particle Swarm Optimization) PSO algorithm has low iteration efficiency during later period and may trap to local optimum, Immune Clone (IC) principle is introduced into the PSO algorithm. The antibodies can be regarded as the particles. According to the degree of affinity, the clone selection, clone suppression, and high-frequency mutation are performed, which can enhance the diversity of particle swarm and the capability of global searching. The optimal compensation experiment is performed in the 40 Gb/s transmission system, in which the compensation time required was about 71 ms. The opening of signal eye diagram has been improved obviously after compensation. The experimental results demonstrate the effectiveness of the algorithm proposed.
出处 《光电工程》 CAS CSCD 北大核心 2010年第4期108-112,共5页 Opto-Electronic Engineering
基金 国家自然科学基金资助项目(60877047) 科技部国际科技合作项目(2008DFR10530)
关键词 群智能 免疫克隆 粒子群优化 偏振模色散补偿 swarm intelligence immune clone particle swarm optimization polarization mode dispersion compensation
  • 相关文献

参考文献10

  • 1Noe R,Sandel D,Yoshida-dierolf M,et al. Polarization mode dispersion compensation at 10, 20 and 40 Gb/s with various optical equalizers [J]. Journal of Lightwave Technology(S0733-8724),1999,17(9):1602-1616.
  • 2Han Ki Ho,Lee Wang Joo. Tracking and separation of time-varying principal states of polarization in optical fiber link for first-order PMD compensation and its filter- dependent performance [J]. Optical Fiber Technology(S1068-5200),2008,14(4):268-274.
  • 3Kieckbusch S,Ferber S,Rosenfeldt H,et al. Automatic PMD compensator in a 160-Gb/s OTDM transmission over deployed fiber using RZ-DPSK modulation format [J]. Journal of Lightwave Technology(S0733-8724),2005,23(1):165-171.
  • 4ZHENG Yuan,ZHANG Xiao-guang,CHEN Lin,et al. Analysis of degree of polarization ellipsoid as feedback signal for polarization mode dispersion compensation in NRZ,RZ and CS-RZ systems [J]. Optics Communications(S0030-4018),2004,234(1/6):107-117.
  • 5曹继红,简水生,陈勇,刘艳,谭中伟.基于线性啁啾光纤光栅色散补偿的2500km-10Gbps无电中继传输系统[J].光电工程,2006,33(9):101-105. 被引量:5
  • 6ZHANG Xiao-guang,ZHENG Yuan,SHEN Yu,et al. Particle swarm optimization used as a control algorithm for adaptive PMD compensation [J]. IEEE Photonics Technology(S1041-1135),2005,17(1):85-87.
  • 7Mendes R,Kennedy J,Neves J. The fully informed particle swarm: simpler, maybe better [J]. IEEE Transactions on Evolutionary Computation(S1089-778X),2004,8(3):204-210.
  • 8刘云龙,林宝军,艾勇.基于改进粒子群优化算法的快速小目标检测[J].光电工程,2009,36(10):6-11. 被引量:3
  • 9陈国初,俞金寿.两群微粒群优化算法及其应用[J].控制理论与应用,2007,24(2):294-298. 被引量:23
  • 10Solis F J,Wets R J B. Minimization by random search techniques [J]. Mathematics of Operations Research(S1526-5471),1981,6(1):19-30.

二级参考文献18

  • 1简水生,延凤平,李唐军,简伟,裴丽,宁提纲.4×10Gb/s 800 km transmission system on G.652 fiber with dispersion compensation by chirped FBG[J].Science China(Technological Sciences),2002,45(6):661-665. 被引量:1
  • 2邹江威,陈曾平.应用形态学与图像流法的空间小目标提取方法[J].光电工程,2005,32(4):13-15. 被引量:15
  • 3Boccignone G, Chianese A, Picariello A, Small target detection using wavelets[C]//Proceedings of 14th International Conference on Pattern Recognition, Brisbane, Qld, Aug 16-20, 1998: 1776-1778.
  • 4Ramaweera A, Halgamuge S, Watson H. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [J]. IEEE Transactions on Evolutionary Computation(S1089-778X), 2004, 8(3): 240-255.
  • 5Janson S, Middendorf M. A hierarchical particle swarm optimizer [C]// Proceedings of IEEE Congress on Evolutionary Computation, Canberra, Australia, Dec S-12, 2003: 770-776.
  • 6Higashi N, Iba H. Particle swarm optimization with gaussian mutation [C]// Proceedings of IEEE Swarm Intelligence Symposium, Indianapolis, Indiana, USA, April24-26, 2003: 72-79.
  • 7Kennedy J, Eberhart R C. Particle Swarm Optimization [C]// Proceeding of IEEE International Conference on Neural Networks, Perth, Australia, 1995: 1942-1948.
  • 8Eberhart R C, Kennedy J. A new optimizer using particle swarm theory [C]// Proceeding On 6th International Symposium on Micro machine and Human Science, Nagoya, Oct 4-6, 1995: 39-43.
  • 9Shi Y, Eberhart R C. A Modified Particle Swarm Optimizer [C]// Proceedings of the IEEE Conference on Evolutionary Computation, Anchorage, AK, May4-9, 1998: 69-73.
  • 10Kennedy J. Some Issues and Practices for Particle Swarms [C]// Proceedings of the IEEE Swarm Intelligence Symposium, Honolulu, HI, April 1-5, 2007: 162-169.

共引文献28

同被引文献37

  • 1刘洪波,王秀坤,谭国真.粒子群优化算法的收敛性分析及其混沌改进算法[J].控制与决策,2006,21(6):636-640. 被引量:62
  • 2王丽芳,曾建潮.基于微粒群算法与模拟退火算法的协同进化方法[J].自动化学报,2006,32(4):630-635. 被引量:33
  • 3Knuth D E. The Art of Computer Programming[ M]. USA: Addison - Wesley, 1998.
  • 4Marsaglia G, Zaman A. A New Class of Random Number Generators [ J ]. Annals of Applied Probability, 1991, 1 (3) : 462 - 480.
  • 5Kennedy J, Eberhart R C. Particle Swarm Optimization [ C]. Proc IEEE International Conference on Neural Networks. Piscataway, NJ: IEEE Service Center, 1995:1942 - 1948.
  • 6Meysenburg M M, Hoehing D, McElvain D, et al. How Random Generator Quality Impacts GA Performance [ C ]. Proceedings of the Genetic and Evolutionary Computation Conference, 2002. San Francisco USA: Morgan Kaufmann Publishers, 2002 : 480 - 487.
  • 7Mattiussi C, Waibel M, Floreano D. Measures of Diversity for Populations and Distances Between Individuals with Highly Recognizable Genomes [ J ]. Evolutionary Computation, 2004, 12(4) : 495 -515.
  • 8Cantu - Paz E. On Random Numbers and the Performance of Genetic Algorithms [ C ]. Proceedings of the Genetic and Evolutionary Computation Conference, 2002. San Francisco USA : Morgan Kaufmann Publishers, 2002 : 311 - 318.
  • 9Yang X S, Deb S. Cuckoo search via Levy flights [C]. In: Proc. of the World Congress on Nature and Biologically Inspired Computing. 2009: 210-214.
  • 10Solis F, Wets R. Minimization by Random Search Techniques [J]. Mathematics of Operations Research, 1981, 6 : 19 - 30.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部