期刊文献+

一种集成模糊特征的测地线主动轮廓模型的图像分割 被引量:1

A Fuzzy Feature Integrating to Geodesic Active Contour Model for Image Segmentation
下载PDF
导出
摘要 构建有模糊特征控制的曲线法向力场集成到测地线主动轮廓模型,使得该模型能包含更多的图像分割信息。当用模糊特征表示图像区域信息时,改进模型保持了原来模型具有边缘指示特性,同时具有区域特征一致性的分割性能。改进模型提高了演化曲线抓取感兴趣目标的范围和提取凹凸区域的能力,可以适应对弱边缘、噪声干涉图像的分割。图像分割的实验说明新的模型对图像分割具有良好的性能。 It has been integrated into geodesic active contour model for the image segmentation that the fuzzy feature vector governs the normal force of curve. The modified model may contain more information of image segmentation. When fuzzy feature represents region information, the modified model has performance of region feature uniform in all the same edges indication for segmentation image. This method has a large capture range of interested region, improves performance of segmenting concave and convex objects and provides an accurate segmentation to weak edges and noise image. Experimental results of applying new scheme to real images demonstrate its segmentation power.
出处 《光电工程》 CAS CSCD 北大核心 2010年第4期113-117,124,共6页 Opto-Electronic Engineering
基金 国家自然科学基金项目(60973094) 江苏省教育厅高校自然科学研究项目(06KJD520048)
关键词 模糊特征 测地线主动轮廓 图像分割 fuzzy feature geodesic active contour image segmentation
  • 相关文献

参考文献8

  • 1Osher S J,Sethian J A. Fronts propagation with curvature dependent speed:Algorithms based on Hamilton-Jacobi formulations [J]. Journal of Computational Physics(S0021-9991),1988,79(1):12–49.
  • 2Caselles V,Kimmel R,Sapiro G. Geodesic active contour [J]. International Journal of Computer Vision(S0920-5691),1997,22(1):61–79.
  • 3Chang Herng-Hua,Valentino Daniel J. An electrostatic deformable model for medical image segmentation [J]. Computerized Medical Imaging and Graphics(S0895-6111),2008,32(1):22–35.
  • 4Paragios N,Deriche R. Geodesic active regions: A new framework to deal with frame partition problems in computer vision [J]. Journal of Visual Communication and Image Representation(S1047-3203),2002,13(1/2):249–268.
  • 5Yu Hongchuan,Bennamoun Mohammed,Chua Chin-Seng. An extension of min/max flow framework [J]. Image and Vision Computing(S0262-8856),2009,27(4):342–353.
  • 6CUI Hua,GAO Li-qun. Geodesic active contour,inertia and initial speed [J]. Pattern Recognition Letters(S0167-8655),2008,29(16):2197–2205.
  • 7石澄贤,曹德欣.自适应气球力主动轮廓的图像分割[J].中国矿业大学学报,2007,36(1):69-74. 被引量:3
  • 8CHENG H D,XU H J. A novel fuzzy logic approach to contrast enhancemen [J]. Pattern Recognition(S0031-3203),2000,33(5):809–819.

二级参考文献10

  • 1CASELLES V, KIMMEL R. , SAPIRO G. Geodesic active contour[J]. IJCV, 1997, 22(1):61-79.
  • 2CASELLES V, CATTE F, COLL T, et al. A geometric model for active contours [J]. Numerische Mathematik, 1993, 66(1):1 31.
  • 3MALLADI R, SETHIAN J, VEMURI B. Evolutionary fronts for topology independent shape modeling and recovery[C]//Proceedings of the Third Europan Conference on Computer Vision. Stockholm.[s. n.], 1994:3-13.
  • 4DEMPSTER A D, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. J. Roy. Stat, Soc., 1977, B39(1): 1-37.
  • 5DENG J W, TSUI H T. A fast level set method for segmentation of low contrast noisy biomedical images[J]. Patten Recognition Letters, 2002, 23 (1) : 161-169.
  • 6OSHER S J, SETHIAN J. Fronts propagation with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988, 79(1) : 12-49.
  • 7KASS M, WITKIN A, TERZOPOULOS D.Snakes: active contour models [J]. Int. Journal Comput., 1987, 1(2) :321-331.
  • 8MALLADI R, SETHIAN J, VEMURI B. Shape modeling with front propagation: A level set approach[J]. IEEE-PAMI, 1995,17 (2) ~ 158-175.
  • 9PARAGIOS N, DERICHE R. Geodesic active regions: a new framework to deal with frame partitionproblems in computer vision[J]. Vis. Comm. & Image Rep., 2002, 13(1-2):249-268.
  • 10SETHIAN J. Marching level set method for monotonically advancing fronts[J]. Pro. Nat. Acad. Sci,1996, 93(4):1591-1595.

共引文献2

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部