期刊文献+

基于改进高斯混合模型的运动物体的图像检测 被引量:6

Moving Target Detection Based on Improved Gaussian Mixture Model
下载PDF
导出
摘要 传统的高斯混合模型在RGB色彩空间只对孤立像素建模,检测结果不够准确,存在拖影现象,检测到的运动物体内部容易出现空洞。针对这些问题,本文提出了一种改进的高斯混合模型。该方法从更符合人眼视觉特性的HSV色彩空间对中心像素和周边像素构成的向量进行建模,改善了原算法的性能;利用彩色分割算法提取连通区域,充分地利用了运动物体的彩色信息,并基于Phong物体光照模型进行了阴影抑制,提高了传统高斯混合模型检测的准确性。实验结果表明,与传统高斯混合模型相比,本算法能更精确地检测出运动物体,对光照变化和阴影具有鲁棒性。 The traditional Gaussian Mixture Model (GMM) is built based on every single pixel in RGB color space, which leads to inaccurate detection results, trailing smear and inanition inside the moving objects. The improved GMM is built in HSV color space, which is fit for human visual system. Single pixel is taken place by a vector which is composed of central pixel itself and its neighbor pixels in order to improve the performance of the model. The connected area is extracted through color segmentation method in order to make full use of the color information. Finally, the shadow area is restrained by Phong’s object lighting model. According to the results of experiments, the improved algorithm can detect moving objects much more precisely. Compared with the traditional GMM, it is robust to lighting changes and shadow.
出处 《光电工程》 CAS CSCD 北大核心 2010年第4期118-124,共7页 Opto-Electronic Engineering
基金 浙江省科技厅资助项目
关键词 高斯混合模型 HSV色彩空间 彩色分割 PHONG光照模型 Gaussian mixture model HSV color space color segmentation Phong’s lighting model
  • 相关文献

参考文献14

  • 1HORN B,SCHUNCK B G. Determining optical flow [J]. Artificial Intelligence(S0974-0635),1981,17:185-203.
  • 2TEKALPAM. Digital Video Processing [M]. Prentice-Hall,1995:526-532.
  • 3MITTAL A,PARAGIOS N. Motion-based background subtraction using adaptive kernel density estimation [C]// Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Washington, DC, USA,June 27-July 2,2004,2:302-309.
  • 4STAUFFER C,GRIMSON W. Adaptive background mixture models for real-time tracking [C]// Proceedings of the 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Fort Collins, CO,June 23-25,1999,2:252.
  • 5HARITAOGLU I,HARWOOD D,DAVIS L S,et al. W4: real-time surveillance of people and theiractivities [J]. IEEE Transactions on Pattern Analysis And Machine Intelligence(S0162-8828),2000,22(8):809-830.
  • 6TSAIG Y,AVERBUCH A. Automatic segmentation of moving objects in video sequences:a region labeling approach [J]. IEEE Transactions on Circuits And Systems For Video Technology(S1051-8215),2002,12(7):597-612.
  • 7BURT P J,HONG T H,ROSENFELD A. Segmentation and estimation of image region properties through cooperative hierarchial computation [J]. IEEE Transactions on Systems, Man and Cybernetics(S1083-4427),1981,11(12):802-809.
  • 8PRATT W K. Digital Image Processing: 1st ed [M]. New York:John Wiley & Sons,1978.
  • 9PHONG B T. Illumination for computer generated pictures [J]. Communications of the ACM(S0001-0782),1975,18(6):311-317.
  • 10FANG X H,XIONG W,HU B J,et al. A Moving Object Detection Algorithm Based on Color Information [J]. Journal of Physics: Conference Series(S1742-6588),2006,48:384-387.

二级参考文献13

  • 1温惠英,徐建闽,刘利频.VEHICLE SEGMENTATION AND SHADOW HANDLER BASED ON EXTREMUM IMAGE[J].Transactions of Nanjing University of Aeronautics and Astronautics,2006,23(1):65-71. 被引量:3
  • 2管业鹏,顾伟康.二维场景阴影区域的自动鲁棒分割[J].电子学报,2006,34(4):624-627. 被引量:16
  • 3Wang Yang, Tan T, Loe K F. A Probabilistie Method for Foreground and Shadow Segmentation[A]. In: Proceedings of 2003 IEEE International Conference on Image Processing [C]. 2003:937 - 940.
  • 4Chang C J, Hu W F, Hsieh J W,et al. Shadow Elimination for Effeetive Moving Objeet Deteetion with Gaussian Models[A]. In: Proceedings of 16th International Conference on Pattern Reeognition[C]. 2002: 540- 543.
  • 5Phong B T. Illumination for Computer Generated Pictures [J]. Communication of ACM, 1975,18(6) : 311 - 317.
  • 6Gonzalez R C,Woods R E.计算机图形学[M].2版.蔡士杰,宋继强,蔡敏,译.北京:电子工业出版社,2003.
  • 7Prati A, Mikic I, Trivedi M M, et al. Detecting Moving Shadows: Algorithms and Evaluation[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2003,25 (7) : 918 -923.
  • 8Salvador E,Cavallaro A, Ebrahimi T. Shadow Identification and Classification Using Invariant Color Models[A]. In: Proceedings of 2001 IEEE International Conference on Acoustics,Speech,and Signal Processing[C]. Salt Lake City, USA: IEEE Computer Society, 2001 : 1 545 - 1 548.
  • 9Xu L Q, Landabaso J L, Pardas M. Shadodw Removal with Bolb - based Morphological Reconstruction for Error Correction[A]. In: Proceedings of 2005 IEEE International Conference on Acoustics, Speech, Signal Proeessing[C]. 2005 : 729 - 732.
  • 10Haritaoglu I, Harxood D, Kavis L S. W4:Real -time Surveillance of People and Their Activities[J]. IEEE Rrans. Pattern Analysis and Machine Intelligence, 2000,22 (8) : 809 - 830.

共引文献4

同被引文献45

  • 1宋利,周源华,周军.基于运动矢量的视频去抖动算法[J].上海交通大学学报,2004,38(z1):63-66. 被引量:7
  • 2李全民,张运楚.自适应混合高斯背景模型的改进[J].计算机应用,2007,27(8):2014-2017. 被引量:21
  • 3ELHABIAN S Y, EL-SAYED K M, AHMED S H. Moving object de- tection in spatial domain using background removal techniques-state-of- art [J]. Recent Patents on Computer Science, 2008, 1(1): 32-54.
  • 4TOYAMA K, KRUMM J, BRUMITT B, et al. Wallflower: Princi- ples and practice of background maintenance [ C]// Proceedings of the Seventh International Conference on Computer Vision. Kerkyra, Greece: IEEE Press, 1999:255-261.
  • 5STAUFFER C, GRIMSON W. Adaptive background mixture models for real-time tracking [ C]// Proceedings of IEEE International Con- ference on Computer Vision and Pattern Recognition. Fort Collins, CO, USA: IEEE Press, J999:246-252.
  • 6BOUWMANS T, ELBAF F, VACHON B. Background modeling u- sing mixture of Gaussians for foreground detection - A survey [ J]. Recent Patents on Computer Science, 2008, 1 (3) : 219 - 237.
  • 7TANG P, GAO L, LIU Z F. Salient moving object detection using stochastic approach filtering [ C]// Proceedings of the Fourth Inter- national Conference on Image and Graphics. Washington, DC: IEEE Computer Society, 2007:530-535.
  • 8JAVED O, SHAFIQUE K, SHAH M. A hierarchical approach to ro- bust background subtraction using color and gradient information [ C] //Proceedings of IEEE Workshop on Motion and Video Com- puting. Orlando, USA: IEEE Press, 2002:22-27.
  • 9WANG W H, WU R C. Fusion of luma and chroma GMMs for HMM-based object detection [ C]//The First Pacific Rim Symposi- um on Advances in Image and Video Technology, LNCS 4319. Ber- lin: Springer, 2006:573-581.
  • 10DUDA R O, HART P E, STORK D G. Pattern classification [ M]. 2nd ed. New York: John Wiley, 2000.

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部