期刊文献+

基于标记的多尺度分水岭视频目标分割算法 被引量:6

Video Object Segmentation Algorithm Based on Marker Multi-measure Watershed
下载PDF
导出
摘要 针对视频目标提取的问题,提出了基于标记的多尺度分水岭视频目标分割算法。该算法以帧间变化检测为基础,通过改进的最小Tsallis交叉熵进行去噪、滤波,经形态学处理后得到运动目标初始二值掩模,并利用初始二值掩模得到用于分水岭算法的前景与背景标记,用该标记修正当前帧的多尺度形态学梯度图像,最后进行分水岭分割,得到具有精确边界的视频对象。实验结果表明,该算法能有效地分割和提取视频序列中的单个、多个以及快速运动的目标,继承了变化检测和分水岭算法速度快的优点,克服了分水岭容易产生过分割的缺点,具有较强的适用性。 Arming at the video object-extracted issue, video object segmentation algorithm is proposed based on marker multi-measure watershed. First, based on the frame difference detection, the initial motion object binary model is obtained by improved minimum Tsallis-cross entropy and morphologic managed. Second, markers of foreground and background for watershed are derived from temporal information, which is used to modify morphological gradient image. Third, watershed segmentation is used to acquire video object with precise boundary. Experimental results show that the proposed algorithm can segment and extract the single, multiple and fast motion object of the video sequence effectively. It has the virtue of low complexity inherited from change detection and watershed and overcomes the defect that it is easy to engender the excessive segmentations of the watershed algorithm, so it has a high adaptability.
出处 《光电工程》 CAS CSCD 北大核心 2010年第4期130-134,共5页 Opto-Electronic Engineering
基金 河北省教育厅发展计划基金资助项目(2006455)
关键词 视频对象分割 运动检测 标记 多尺度分水岭 video object segmentation moving detection marker multi-measure watershed
  • 相关文献

参考文献12

  • 1张晓波,刘文耀,吕大伟.基于时空信息的自动视频对象分割算法[J].光电子.激光,2008,19(3):384-387. 被引量:13
  • 2Oboukhova Natalia A. Automatic Segmentation and Tracking of Objects in Video Computer System [C]// IEEE Tenth International Symposium on Consumer Electronics,St. Petersburg,June 1-6,2006:1-4.
  • 3CHEN Bai-sheng,LEI Yu-nqi,LI Wang-wei. A Novel Background Model for Real-Time Vehicle Detection [C]// Proceedings of 7th International Conference on Signal Processing,Beijing, China,Aug 31-Sept 4,2004,2:1276-1279.
  • 4Fatih Porikli. Automatic Video Object Segmentation Using Volume Growing and Hierarchical Clustering [J]. Journal on Applied Signal Processing(S1687-0433),2004(6):814-832.
  • 5曹丹华,邹伟,吴裕斌.基于背景图像差分的运动人体检测[J].光电工程,2007,34(6):107-111. 被引量:36
  • 6Vincent L,Soille P. Watershed in digital spaces: An efficient algorithm based on immersion simulations [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence(S0162-8828),1991,13(6):583-589.
  • 7Haris K,Efstratiadis S N,Maglaveras N,et al. Hybrid image segmentation using watersheds and fast region merging [J]. IEEE Trans. on Image Processing(S1057-7149),1998,7(12):1684-1699.
  • 8O’Callaghan R J,Bull D R. Combined morphological-spectral unsupervised image segmentation [J]. IEEE Trans. on Image Processing(S1057-7149),2005,14(1):49-62.
  • 9Gao Hai,Siu Wan-Chi,Hou Chao-Huan. Improved techniques for automatic image segmentation [J]. IEEE Trans. on Circuits and Systems for Video Technology(S1051-8215),2001,11(12):1273-1280.
  • 10Salembier P,Pardas M. Hierarchical morphological segmentation for image sequence coding [J]. IEEE Trans. on Image Processing(S1057-7149),1994,3(5):639-651.

二级参考文献20

  • 1张昊,黄战华,郁道银,蔡怀宇,刘正.二维图像序列中刚性目标的准确定位方法[J].光电子.激光,2005,16(1):102-104. 被引量:4
  • 2柏长冰,齐春,杨莹,宋福民.Hausdorff匹配快速检测PCB基准标记[J].光电子.激光,2006,17(4):498-501. 被引量:4
  • 3潘兵,谢惠民.基于差分进化的数字图像相关方法[J].光电子.激光,2007,18(1):100-103. 被引量:20
  • 4FREER A,BEGGS J.Automatic video surveillance with intelligent scene monitoring and intruder detection[A].30th Annual 1996 International Carnahan Conference on Security Technology[C].Lexington,KY,USA:IEEE,1996:89-94.
  • 5BRANCA A,SPAGNOLO P.Human motion tracking in outdoor environment[J].International Conference on Control Automation Robotics and Vision,2002,3(2):1585-1590.
  • 6Bouthemy P,Francois E. Motion segmentation and qualitative dynamic scene analysis from an image sequence[J]. Int J Comput Vision, 1993,10(2) : 157-182.
  • 7Meier T,Ngan K N. Automatic segmentation of moving objects for video object plane generation[J]. IEEE Trails Circuits Syst Video Technol. 1998,8(5) :525-538.
  • 8FAN Jian-ping,YU ,Jun,GEN Fu-jita. Spatio-ternporal Segmentation for Compact Video Representation[J]. Signal Processing:Image Communication, 2001 ,(16) :553-566.
  • 9Neff A, Colonnese S, Russo G, et al. Automatic moving object and background separation[J]. Signal Processing, 1998,66(2) : 219-232.
  • 10YU Hua-long,LU Huan-zhang. A new method for real-time segmenting video objects based on statistical change detection[J]. Journal of Image and Graphics,2005,10(1) :98-102.

共引文献47

同被引文献59

  • 1邱书波,王化祥,梁志伟.一种新的B-Snake算法在目标轮廓跟踪中的应用[J].中国图象图形学报(A辑),2005,10(5):585-589. 被引量:11
  • 2李刚,邱尚斌,林凌,曾锐利.基于背景差法和帧间差法的运动目标检测方法[J].仪器仪表学报,2006,27(8):961-964. 被引量:111
  • 3Cherry D S, Cairns J. Biological monitoring: Part V-Preference and avoidance studies [J]. Water Resource(S0097-8078), 1982, 16: 263-301.
  • 4Besch W K, Kemball A, Meger Warden K, et al. A biological monitoring system employing rheotaxis of fish [J]. ASTM SpeeialTeehniealPubfieation(S0066-0558), 1976(607), 56-74.
  • 5FAN Jian-ping, YU Jun, Gen Fujita, et al. Spatio-temporal Segmentation for Compact Video Representation [J]. Signal Processing: Image Communicafion(S0923-5965), 2001, 16(6): 553-566.
  • 6Han J, Ngan K N, LI Ming-jing, et al. Unsupervised Extraction of Visual Attention Objects in Color Images [J]. IEEE Trans. on Circuits and Systems forVideo Technology(S1057-7149), 2006, 16(1): 141-145.
  • 7Schoepflin T, Chalana V, Kim Y. Video Object Tracking with a Sequential Hierarchy of Template Deformations [J]. IEEE Trans. on Circuits and Systems for Video Technology(S 1057-7149), 2001, 11(11): 1171-1182.
  • 8Park H W, Kim S T. Active Contour Model with Gradient Directional Information: Directional Snake [J]. IEEE Trans. on Circuits and Systems for Video Technology(S1057-7149), 2001, 11(2): 252-256.
  • 9Wu Z, Leahy R. An optimal graph theoretic approach to data clus- tering: theory and its application to image segmentation [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1993,15 (11): 1101-1113.
  • 10Shi J, Malik J. Normalized cuts and image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22 (8): 888-890.

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部