期刊文献+

一种基于卷积码模型的遗传序列分析方法 被引量:1

A method for analyzing genetic sequence based on a convolutional code model
下载PDF
导出
摘要 【目的】研究通信纠错编码理论在生物学领域研究中的应用。【方法】基于纠错编码理论,将卷积码模型分析方法用于遗传序列的分析,结合密码子简并性以及碱基关联短程为主的特性,对卷积码模型的生成矩阵、编码长度和约束长度等参数进行讨论。对2种原核生物(Escherichia colistr.K-12 substr.MG1655和Staphylococcus epidermidisATCC 12228)与2种真核生物(Arabidopsis thaliana chromosome 4和Oryza sativa(japonica cultivar-group)chromosome 10)DNA序列翻译起始及终止的特征进行分析,并通过对不同卷积码模型的比较,确定合适的分析模型。【结果】在适当的分析模型下,分析结果在开放阅读框(ORF)起始端和终止端附近,显示出与起始密码子和终止密码子位置紧密关联的明显码距变化,而不适当的分析模型则使分析结果与生物意义的对应关系下降;分析方法对2种原核生物和2种真核生物具有较好的统一性。【结论】通信纠错编码模型与蕴含纠错机制的生物序列编码特性可以较好地结合,这对将纠错编码理论与生物学研究相结合具有一定的指导意义。 [Objective] The objective of this research was to study the application of error-correction coding theory of communication engineering in biological field. [Method] The principle of eonvolutional code was employed to analyze genetic sequence based on error-correction coding theory. The parameters, such as generator matrix, code length and constraint length, of the convolutional code models were designed and compared based on the degeneracy of codons and short-range dominance of bases correlation. The coding features of the translation initiation and termination of the DNA sequences of two prokaryotes (Escherichia coli str. K-12 substr. MG1655 and Staphylococcus epiderrnidis ATCC 12228) and two eukaryotes (Arabidopsis thaliana chromosome 4 and Oryza sativa (japonica cultivar-group) chromosome 10) were studied to search appropriate analysis model. [Result] Obvious changes of average code distance were observed near the initiation site and the termination site of the open reading frame (ORF) in appropriate models, and the parallelism between analysis results and biology sense descended in inappropriate models. The proposed method presents universality for the two prokaryotes and the two eukaryotes. [Conclusion] The analysis suggests that the error-correction coding model of communication engineering can be used to ana-lyze genetic sequences which contain error-correction mechanism,and it provides instructions to use errorcorrection coding theory for further study in biological field.
出处 《西北农林科技大学学报(自然科学版)》 CSCD 北大核心 2010年第4期207-214,共8页 Journal of Northwest A&F University(Natural Science Edition)
基金 教育部高等学校博士学科点专项科研基金项目(20050611022) 重庆市自然科学基金(重点)项目(2009BA2021)
关键词 纠错编码 卷积码 短程关联优势 密码子 error-correction coding convolutional code short-range dominance codon
  • 相关文献

参考文献20

  • 1Wang F P,Li H. Codon-pair usage and genome evolution [J]. Gene,2009,433(1/2) :8-15.
  • 2Komar A A, Lesnik T, Reiss C. Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation [J]. FEBS Letters,1999,462(3) :387-391.
  • 3Roman-roldan R, Bernaola-galvan P, Oliver J L. Application of information theory to DNA sequence analysis: A review [J]. Pattern Recognition, 1996,29(7) : 1187-1194.
  • 4Wang X H,Istepanian R S H,Song Y H,et al. Review of application of coding theory in genetic sequence analysis[C]//Sth International Workshop on Enterprise Networking and Computing in Healthcare Industry. Santa Monica, Canada: IEEE, 2003:5-9.
  • 5Dawy Z,Gonzalez,Faruck M G,et al. Modeling and analysis of gene expression mechanisms a communication theory approach [C]//2005 IEEE International Conference on Communications. Seoul, Korea : IEEE, 2005 : 815 -819.
  • 6Rosen G L. Examining coding structure and redundancy in DNA [J]. IEEE Engineering In Medicine And Biology Magazine, 2006,25 (1):62-68.
  • 7Ashlock D, Golden J. Chaos automata: iterated function systems with memory [J]. Physiea D,2003,181:274-285.
  • 8Yao Y H.Nan X Y,Wang T M. Analysis of similarity-dissimilarity of DNA sequences based on a 3-D graphical representation [J]. Chemical Physics Letters, 2005,411.
  • 9Liao B,Tan M S,Ding K Q. A 4D representation of DNA sequences and its application [J]. Chemical Physics Letters, 2005,402:380-383.
  • 10Wang S Y,Tian F C,Liu X,et al. A novel representation approach to DNA sequence and its application [J]. IEEE Signal Processing Letters, 2009,16(4) :275-278.

二级参考文献14

  • 1P.N.Hengen.Methods and reagents-Fidelity of DNA polymerases for PCR[J].Trends in Biochemical Sciences,1995,20(8):324-325.
  • 2U.S.Dept Commerce/NOAA/NMFS/NWFSC/Molecular Biology Protocols,Error Rates for Thermal Resistant DNA polymerases[EB/OL].http://micro.nwfsc.noaa.gov/protocols/taq-errors.html,by Tim Fitzwater,2002.10.
  • 3Manish K.Gupta.The Quest for Error Correction in Biology[J].IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE,JANUARY/FEBRUARY,2006,25(1):46-53.
  • 4Elebeoba E.May,Towards a Biological Coding Theory Discipline[J].New Thesis,2004,01(1):19-38.
  • 5王新梅,肖国镇.纠错码:原理与方法(修订版)[M].西安:西安电子科技大学出版社,2003.
  • 6Elebeoba E.May,Mladen A.Vouk,Donald L.Bitzer,David I.Rosnick,Coding Theory Based Models for Protein Translation in Prokaryotic Organisms[J].Biosystems,2004,76(1-3),August-October:249-260.
  • 7Elebeoba E.May,Anna M.Johnston,William E.Hart,Jean-Paul Watson,Richard J.Pryor,and Mark D.Rintoul,Detection and Reconstruction of Error Control Codes for Engineered and Biological Regulatory Systems[EB/OL].http://www.cs.sandia.gov/~wehart/Papers/2003/MayJohHarWatPryRin03-sand.pdf,Sandia National Laboratories,2003.
  • 8The Chimpanzee Sequencing and Analysis Consortium.Initial sequence of the chimpanzee genome and comparison with the human genome.Nature,2005,437:69-87
  • 9Girard A,Sachidanandam R,Hannon GJ,Carmell MA.A germline-specific class of small RNAs binds mammalian Piwi proteins.Nature,2006,442:199-202
  • 10Deng W,Zhu XP,Skogerbφ G,Zhao Y,Fu Z,Wang YD,He HS,Cai L,Sun H,Liu CN,Li B,Bai BY,Wang J,Jia D,Sun SW,He H,Cui Y,Wang Y,Bu DB,Chen RS.Organisation of the Caenorhabditis elegans small non-coding transcriptome:genomic features,biogenesis and expression.Genome Research,2006,16:20-29

共引文献8

同被引文献44

  • 1曹更生,柳爱莲,李宁.隐藏在基因组中的遗传信息[J].遗传,2004,26(5):714-720. 被引量:8
  • 2赵辉,李启寨,李俊,曾长青,胡松年,于军.相邻碱基组分与产生SNP的转换或颠换在植物基因组中的研究[J].中国科学(C辑),2006,36(1):1-8. 被引量:19
  • 3张静,蔡军,李衍达.人类可变翻译事件的研究[J].中国科学(C辑),2007,37(2):198-203. 被引量:2
  • 4Wang XH, Istepanian RSH, Geake T. Error control coding in microarray data analysis [C]. Workshop on Genomic Signal Processing and Statistics, 2004.
  • 5Gonzalez DL, Giannerini S, Rosa R. Strong short-range correlations and dichotomic codon classes in coding DNA sequences. Phys Rev E, 2008, 78(5): 051918.
  • 6Nicolas R, Miklos Bercsenyi, LaszloOrban, et al. Duplication of fgfrl permits fgf signaling to serve as a target for selection during domestication. Curr Biol, 2009, 19(19): 1642-7.
  • 7Shpaer EG. Constraints on codon context in Escherichia coli genes-their possible role in modulating the effiency of translation. J Mol Biol, 1986, 188(4): 555-64.
  • 8Luo LF, Lee WJ, Jia LJ, et al. Statistical correlation of nucleotides in a DNA sequence. Phys Rev E, 1998, 58(1): 861-71.
  • 9Gatlin LL. Information theory and the living system[M]. New York, NY: Columbia University Press, 1972.
  • 10May EE, Vouk MA, Bitzer DL, et al. An error-correcting code framework for genetic sequence analysis. J Franklin I, 2004, 341:89-109.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部